首页> 美国卫生研究院文献>NeuroImage : Clinical >Removal of artifacts from resting-state fMRI data in stroke
【2h】

Removal of artifacts from resting-state fMRI data in stroke

机译:从中风的静止状态fMRI数据中去除伪影

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We examined the effect of lesion on the resting-state functional connectivity in chronic post-stroke patients. We found many instances of strong correlations in BOLD signal measured at different locations within the lesion, making it hard to distinguish from the connectivity between intact and strongly connected regions. Regression of the mean cerebro-spinal fluid signal did not alleviate this problem. The connectomes computed by exclusion of lesioned voxels were not good predictors of the behavioral measures. We came up with a novel method that utilizes Independent Component Analysis (as implemented in FSL MELODIC) to identify the sources of variance in the resting-state fMRI data that are driven by the lesion, and to remove this variance. The resulting functional connectomes show better correlations with the behavioral measures of speech and language, and improve the out-of-sample prediction accuracy of multivariate analysis. We therefore advocate this preprocessing method for studies of post-stroke functional connectivity, particularly in samples with large lesions.
机译:我们检查了病变对慢性卒中后患者静息状态功能连接的影响。我们发现在病变内不同位置测得的BOLD信号中有很强的相关性实例,很难区分完整区域和强连接区域之间的连通性。平均脑脊髓液信号的回归不能缓解这个问题。通过排除病变体素计算出的连接组不是行为指标的良好预测指标。我们提出了一种新颖的方法,该方法利用独立成分分析(在FSL MELODIC中实施)来识别由病变驱动的静止状态fMRI数据中的差异来源,并消除这种差异。产生的功能连接体显示出与语音和语言的行为度量更好的相关性,并提高了多元分析的样本外预测准确性。因此,我们提倡使用这种预处理方法来研究卒中后功能的连通性,特别是在具有较大病变的样品中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号