首页> 美国卫生研究院文献>Molecules >Bifunctional Bioactive Polymer Surfaces with Micrometer and Submicrometer-Sized Structure: The Effects of Structure Spacing and Elastic Modulus on Bioactivity
【2h】

Bifunctional Bioactive Polymer Surfaces with Micrometer and Submicrometer-Sized Structure: The Effects of Structure Spacing and Elastic Modulus on Bioactivity

机译:具有微米和亚微米尺寸结构的双功能生物活性聚合物表面:结构间距和弹性模量对生物活性的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This study presents a comparison of two types of bifunctional structured surface that were made from the same polymer—an antimicrobial polycation (a synthetic mimic of an antimicrobial peptide, SMAMP) and a protein-repellent polyzwitterion (poly(sulfobetaines), PSB). The first type of bifunctional surface was fabricated by a colloidal lithography (CL) based process where the two polymers were immobilized sequentially onto pre-structured surfaces with a chemical contrast (gold on silicon). This enabled site-selective covalent attachment. The CL materials had a spacing ranging from 200 nm to 2 µm. The second type of structured surface (spacing: 1–8.5 µm) was fabricated using a microcontact printing (µCP) process where SMAMP patches were printed onto a PSB network, so that 3D surface features were obtained. The thus obtained materials were studied by quantitative nanomechanical measurements using atomic force microscopy (QNM-AFM). The different architectures led to different local elastic moduli at the polymer-air interface, where the CL surfaces were much stiffer (Derjaguin-Muller-Toporov (DMT) modulus = 20 ± 0.8 GPa) compared to the structured 3D networks obtained by µCP (DMT modulus = 42 ± 1.1 MPa). The effects of the surface topology and stiffness on the antimicrobial activity against Escherichia coli, the protein repellency (using fibrinogen), and the compatibility with human gingival mucosal keratinocytes were investigated. The softer 3D µCP surfaces had simultaneous antimicrobial activity, protein repellency, and cell compatibility at all spacings. For the stiffer CL surfaces, quantitative simultaneous antimicrobial activity and protein repellency was not obtained. However, the cell compatibility could be maintained at all spacings. The optimum spacing for the CL materials was in the range of 500 nm–1 µm, with significantly reduced antimicrobial activity at 2 µm spacing. Thus, the soft polymer network obtained by µCP could be more easily optimized than the stiff CL surface, and had a broader topology range of optimal or near-optimal bioactivity.
机译:这项研究比较了由相同聚合物制成的两种双功能结构化表面-抗菌聚阳离子(抗菌肽SMAMP的合成模拟物)和拒蛋白的两性离子(poly(sulfobetaines),PSB)。第一种双功能表面是通过基于胶体光刻(CL)的工艺制造的,其中两种聚合物顺序固定在具有化学对比(金在硅上)的预结构化表面上。这启用了站点选择性共价连接。 CL材料的间距为200nm至2μm。第二种结构化表面(间距:1-8.5 µm)是使用微接触印刷(µCP)工艺制造的,该工艺将SMAMP贴片印刷到PSB网络上,从而获得3D表面特征。使用原子力显微镜(QNM-AFM)通过定量的纳米机械测量来研究由此获得的材料。不同的体系结构导致聚合物-空气界面处的局部弹性模量不同,与通过µCP(DMT)获得的结构化3D网络相比,CL表面的刚性更高(Derjaguin-Muller-Toporov(DMT)模量= 20±0.8 GPa)。模量= 42±1.1 MPa)。研究了表面拓扑和刚度对大肠杆菌的抗菌活性,蛋白质排斥性(使用纤维蛋白原)以及与人牙龈粘膜角质形成细胞的相容性的影响。较软的3D µCP表面在所有间距下均具有同时的抗菌活性,蛋白排斥性和细胞相容性。对于较硬的CL表面,未获得定量的同时抗菌活性和蛋白排斥性。但是,可以在所有间距下保持单元兼容性。 CL材料的最佳间距在500 nm–1 µm的范围内,在2 µm的间距下抗菌活性大大降低。因此,与刚性CL表面相比,通过µCP获得的软聚合物网络更容易优化,并且具有更宽的最佳或接近最佳生物活性的拓扑范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号