首页> 美国卫生研究院文献>Molecules >Theoretical Study of the C2H5 + HO2 Reaction: Mechanism and Kinetics
【2h】

Theoretical Study of the C2H5 + HO2 Reaction: Mechanism and Kinetics

机译:C2H5 + HO2反应的理论研究:机理和动力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The mechanism and kinetics for the reaction of the HO2 radical with the ethyl (C2H5) radical have been investigated theoretically. The electronic structure information of the potential energy surface (PES) is obtained at the MP2/6-311++G(d,p) level of theory, and the single-point energies are refined by the CCSD(T)/6-311+G(3df,2p) level of theory. The kinetics of the reaction with multiple channels have been studied by applying variational transition-state theory (VTST) and Rice–Ramsperger–Kassel–Marcus (RRKM) theory over wide temperature and pressure ranges (T = 220–3000 K; P = 1 × 10−4–100 bar). The calculated results show that the HO2 radical can attack C2H5 via a barrierless addition mechanism to form the energy-rich intermediate >IM1 C2H5OOH (68.7 kcal/mol) on the singlet PES. The collisional stabilization intermediate >IM1 is the predominant product of the reaction at high pressures and low temperatures, while the bimolecular product >P1 C2H5O + OH becomes the primary product at lower pressures or higher temperatures. At the experimentally measured temperature 293 K and in the whole pressure range, the reaction yields >P1 as major product, which is in good agreement with experiment results, and the branching ratios are predicted to change from 0.96 at 1 × 10−4 bar to 0.66 at 100 bar. Moreover, the direct H-abstraction product >P16 C2H6 + 3O2 on the triplet PES is the secondary feasible product with a yield of 0.04 at the collisional limit of 293 K. The present results will be useful to gain deeper insight into the understanding of the kinetics of the C2H5 + HO2 reaction under atmospheric and practical combustion conditions.
机译:理论上研究了HO2自由基与乙基(C2H5)自由基反应的机理和动力学。从理论上的MP2 / 6-311 ++ G(d,p)级别获得势能面(PES)的电子结构信息,并通过CCSD(T)/ 6-精炼单点能量。 311 + G(3df,2p)的理论水平。通过在宽温度和压力范围内(T = 220-3000 K; P = 1)应用变迁过渡态理论(VTST)和莱斯-兰斯珀格-卡塞尔-马库斯(RRKM)理论研究了多通道反应动力学。 ×10 −4 –100 bar)。计算结果表明,HO2自由基可以通过无障碍加成机理攻击C2H5,从而在单线态PES上形成能量丰富的中间体> IM1 C2H5OOH(68.7 kcal / mol)。碰撞稳定中间体> IM1 是在高压和低温下反应的主要产物,而双分子产物> P1 C2H5O + OH在较低压力或更高压力下成为主要产物温度。在实验测得的温度293 K和整个压力范围内,反应的主要产物> P1 与实验结果吻合良好,支化比预计从0.96变为1 ×10 −4 条在100 bar时为0.66。此外,在三重态PES上直接H提取产物> P16 C2H6 + 3 O2是次生可行产物,在293 K的碰撞极限下产率为0.04。目前的结果将有助于更深入地了解大气和实际条件下C 2 H 5 + HO 2 反应动力学燃烧条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号