首页> 美国卫生研究院文献>Microbial Genomics >Metagenomic data-mining reveals contrasting microbial populations responsible for trimethylamine formation in human gut and marine ecosystems
【2h】

Metagenomic data-mining reveals contrasting microbial populations responsible for trimethylamine formation in human gut and marine ecosystems

机译:元基因组数据挖掘揭示了负责人类肠道和海洋生态系统中三甲胺形成的不同微生物种群

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Existing metagenome datasets from many different environments contain untapped potential for understanding metabolic pathways and their biological impact. Our interest lies in the formation of trimethylamine (TMA), a key metabolite in both human health and climate change. Here, we focus on bacterial degradation pathways for choline, carnitine, glycine betaine and trimethylamine N-oxide (TMAO) to TMA in human gut and marine metagenomes. We found the TMAO reductase pathway was the most prevalent pathway in both environments. Proteobacteria were found to contribute the majority of the TMAO reductase pathway sequences, except in the stressed gut, where Actinobacteria dominated. Interestingly, in the human gut metagenomes, a high proportion of the Proteobacteria hits were accounted for by the genera Klebsiella and Escherichia. Furthermore Klebsiella and Escherichia harboured three of the four potential TMA-production pathways (choline, carnitine and TMAO), suggesting they have a key role in TMA cycling in the human gut. In addition to the intensive TMAO–TMA cycling in the marine environment, our data suggest that carnitine-to-TMA transformation plays an overlooked role in aerobic marine surface waters, whereas choline-to-TMA transformation is important in anaerobic marine sediments. Our study provides new insights into the potential key microbes and metabolic pathways for TMA formation in two contrasting environments.
机译:来自许多不同环境的现有元基因组数据集包含尚未开发的潜力,可用于了解代谢途径及其生物学影响。我们的兴趣在于三甲胺(TMA)的形成,这是人类健康和气候变化的关键代谢产物。在这里,我们专注于人类肠道和海洋基因组中TMA的胆碱,肉碱,甘氨酸甜菜碱和三甲胺N-氧化物(TMAO)的细菌降解途径。我们发现TMAO还原酶途径是两种环境中最普遍的途径。发现在变形放线菌占主导的肠道中,除了变形肠外,变形杆菌还贡献了大多数的TMAO还原酶途径。有趣的是,在人类肠道元基因组中,Klebsiella和Escherichia属占了很大一部分的Proteobacteria命中。此外,克雷伯菌和大肠埃希氏菌包含四种可能的TMA产生途径中的三种(胆碱,肉碱和TMAO),表明它们在人类肠道TMA循环中起关键作用。除了在海洋环境中进行密集的TMAO–TMA循环外,我们的数据还表明,肉碱向TMA的转化在需氧海洋表层水中起着被忽视的作用,而胆碱向TMA的转化在厌氧的海洋沉积物中也很重要。我们的研究为两种相反环境中TMA形成的潜在关键微生物和代谢途径提供了新见解。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号