首页> 美国卫生研究院文献>Methodist DeBakey Cardiovascular Journal >Patient-Specific Computational Modeling and Magnetic Nanoconstructs: Tools for Maximizing the Efficacy of Stem Cell-Based Therapies
【2h】

Patient-Specific Computational Modeling and Magnetic Nanoconstructs: Tools for Maximizing the Efficacy of Stem Cell-Based Therapies

机译:特定于患者的计算模型和磁性纳米构造:用于最大化基于干细胞疗法的功效的工具

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Stem cell transplantation has the potential to restore heart function following myocardial infarction. However, the success of any stem cell-based therapy is critically linked to the effective homing and early engraftment of the injected cells at the infarcted site. Here, a hierarchical multiscale computational model is proposed for predicting the patient-specific vascular transport and intratissue homing and migration of stem cells injected either systemically or locally. Starting with patient-specific data, such as the vascular geometry, blood flow, and location of the infarcted area, the computational model can be used to perform parametric analysis to identify optimal injection conditions in terms of administration route, injection site, catheter type, and infusion velocity. In addition to this, a new generation of magnetic nanoconstructs is introduced for labeling stem cells and monitoring their behavior in vivo via magnetic resonance imaging. These nanoconstructs also can be used for multimodal imaging, merging MRI and nuclear imaging, and the intracellular delivery of active agents to support stem cell differentiation. The convergence of computational modeling and novel nanoconstructs for stem cell labeling could improve our understanding in cell homing and early engraftment at the infarcted site and thus pave the way to more effective stem cell-based therapies.
机译:干细胞移植有可能在心肌梗塞后恢复心脏功能。但是,任何基于干细胞的疗法的成功都与梗死部位注射细胞的有效归巢和早期植入密切相关。在此,提出了一种分层的多尺度计算模型,用于预测系统或局部注射的干细胞的患者特异性血管运输以及组织内归巢和迁移。从特定于患者的数据开始,例如血管的几何形状,血流和梗塞区域的位置,该计算模型可用于执行参数分析,以根据给药途径,注射部位,导管类型,和输液速度。除此之外,还引入了新一代磁性纳米结构,用于标记干细胞并通过磁共振成像在体内监测其行为。这些纳米结构还可用于多峰成像,MRI和核成像合并以及活性剂在细胞内的传递,以支持干细胞的分化。用于干细胞标记的计算模型和新型纳米结构的融合可以增进我们对梗死部位细胞归巢和早期植入的了解,从而为基于干细胞的更有效疗法铺平道路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号