首页> 美国卫生研究院文献>Light Science Applications >Electrons dynamics control by shaping femtosecond laser pulses in microanofabrication: modeling method measurement and application
【2h】

Electrons dynamics control by shaping femtosecond laser pulses in microanofabrication: modeling method measurement and application

机译:通过在微/纳米加工中成形飞秒激光脉冲来控制电子动力学:建模方法测量和应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

During femtosecond laser fabrication, photons are mainly absorbed by electrons, and the subsequent energy transfer from electrons to ions is of picosecond order. Hence, lattice motion is negligible within the femtosecond pulse duration, whereas femtosecond photon-electron interactions dominate the entire fabrication process. Therefore, femtosecond laser fabrication must be improved by controlling localized transient electron dynamics, which poses a challenge for measuring and controlling at the electron level during fabrication processes. Pump-probe spectroscopy presents a viable solution, which can be used to observe electron dynamics during a chemical reaction. In fact, femtosecond pulse durations are shorter than many physical/chemical characteristic times, which permits manipulating, adjusting, or interfering with electron dynamics. Hence, we proposed to control localized transient electron dynamics by temporally or spatially shaping femtosecond pulses, and further to modify localized transient materials properties, and then to adjust material phase change, and eventually to implement a novel fabrication method. This review covers our progresses over the past decade regarding electrons dynamics control (EDC) by shaping femtosecond laser pulses in microanomanufacturing: (1) Theoretical models were developed to prove EDC feasibility and reveal its mechanisms; (2) on the basis of the theoretical predictions, many experiments are conducted to validate our EDC-based femtosecond laser fabrication method. Seven examples are reported, which proves that the proposed method can significantly improve fabrication precision, quality, throughput and repeatability and effectively control microanoscale structures; (3) a multiscale measurement system was proposed and developed to study the fundamentals of EDC from the femtosecond scale to the nanosecond scale and to the millisecond scale; and (4) As an example of practical applications, our method was employed to fabricate some key structures in one of the 16 Chinese National S&T Major Projects, for which electron dynamics were measured using our multiscale measurement system.
机译:在飞秒激光器的制造过程中,光子主要被电子吸收,随后从电子到离子的能量转移为皮秒级。因此,在飞秒脉冲持续时间内,晶格运动可以忽略不计,而飞秒光子-电子相互作用则主导了整个制造过程。因此,必须通过控制局部瞬态电子动力学来改进飞秒激光器的制造,这对于在制造过程中在电子水平上进行测量和控制提出了挑战。泵浦探针光谱法提供了一种可行的解决方案,可用于观察化学反应过程中的电子动力学。实际上,飞秒脉冲持续时间比许多物理/化学特征时间短,这允许操纵,调节或干扰电子动力学。因此,我们提出通过在时间或空间上对飞秒脉冲进行整形来控制局部瞬态电子动力学,并进一步修改局部瞬态材料的性能,然后调整材料的相变,最终实现一种新颖的制造方法。这篇综述涵盖了我们过去十年在微/纳米制造中通过成形飞秒激光脉冲在电子动力学控制(EDC)方面的进展:(1)建立了理论模型以证明EDC的可行性并揭示其机理; (2)在理论预测的基础上,进行了大量实验以验证我们基于EDC的飞秒激光器的制造方法。报告了七个实例,证明该方法可以显着提高制造精度,质量,产量和可重复性,并有效地控制微米/纳米级结构。 (3)提出并开发了一种多尺度测量系统,以研究从飞秒尺度到纳秒尺度到毫秒尺度的EDC的基本原理; (4)以实际应用为例,在16个国家科技重大专项之一中,我们的方法被用于制造一些关键结构,并使用我们的多尺度测量系统测量了其电子动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号