首页> 美国卫生研究院文献>Materials >Hyperelastic and Stacked Ensemble-Driven Predictive Modeling of PEMFC Gaskets Under Thermal and Chemical Aging
【2h】

Hyperelastic and Stacked Ensemble-Driven Predictive Modeling of PEMFC Gaskets Under Thermal and Chemical Aging

机译:PEMFC 垫片在热老化和化学老化下的超弹性和堆叠集成驱动预测建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This study comprehensively investigates the stress distribution and aging effects in Ethylene Propylene Diene Monomer (EPDM) and Liquid Silicone Rubber (LSR) gasket materials through a novel integration of hyperelastic modeling and advanced machine learning techniques. By employing the Mooney–Rivlin, Ogden, and Yeoh hyperelastic models, we evaluated the mechanical behavior of EPDM and LSR under conditions of no aging, heat aging, and combined heat- and sulfuric-acid exposure. Each model revealed distinct sensitivities to stress distribution and material deformation, with peak von Mises stress values indicating that LSR experiences higher internal stress than EPDM across all conditions. For instance, without aging, LSR shows a von Mises stress of 24.17 MPa compared to 14.96 MPa for EPDM, while under heat and sulfuric acid exposure, LSR still exhibits higher stress values, showcasing its resilience under extreme conditions. Additionally, the ensemble learning approach achieved a classification accuracy of 98% for LSR and 84% for EPDM in predicting aging effects, underscoring the robustness of our predictive framework. These findings offer practical implications for selecting suitable gasket materials and developing predictive maintenance strategies in industrial applications, such as fuel cells, where material integrity under stress and aging is paramount.
机译:本研究通过超弹性建模和先进机器学习技术的新颖集成,全面研究了乙烯丙烯二烯单体 (EPDM) 和液态硅橡胶 (LSR) 垫片材料中的应力分布和老化效应。通过使用 Mooney-Rivlin、Ogden 和 Yeoh 超弹性模型,我们评估了 EPDM 和 LSR 在不老化、热老化以及热和硫酸联合暴露条件下的机械行为。每个模型都显示出对应力分布和材料变形的不同敏感性,峰值 von Mises 应力值表明 LSR 在所有条件下都比 EPDM 承受更高的内应力。例如,在没有老化的情况下,LSR 的 von Mises 应力为 24.17 MPa,而 EPDM 为 14.96 MPa,而在高温和硫酸暴露下,LSR 仍然表现出更高的应力值,显示出其在极端条件下的弹性。此外,集成学习方法在预测老化效应方面实现了 98% 的 LSR 分类准确率和 84% 的 EPDM 分类准确率,这凸显了我们预测框架的稳健性。这些发现为在工业应用(如燃料电池)中选择合适的垫片材料和开发预测性维护策略提供了实际意义,在这些应用中,材料在应力和老化下的完整性至关重要。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号