首页> 美国卫生研究院文献>Human Brain Mapping >Accelerating Heritability Genetic Correlation and Genome‐Wide Association Imaging Genetic Analyses in Complex Pedigrees
【2h】

Accelerating Heritability Genetic Correlation and Genome‐Wide Association Imaging Genetic Analyses in Complex Pedigrees

机译:加速复杂家系中的遗传力、遗传相关性和全基因组关联成像遗传分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

National and international biobanking efforts led to the collection of large and inclusive imaging genetics datasets that enable examination of the contribution of genetic and environmental factors to human brains in illness and health. High‐resolution neuroimaging (~104–6 voxels) and genetic (106–8 single nucleotide polymorphic [SNP] variants) data are available in statistically powerful (N = 103–5) epidemiological and disorder‐focused samples. Performing imaging genetics analyses at full resolution afforded in these datasets is a formidable computational task even under the assumption of unrelatedness among the subjects. The computational complexity rises as ~N 2–3 (where N is the sample size), when accounting for relatedness among subjects. We describe fast, non‐iterative simplifications to accelerate classical variance component (VC) methods including heritability, genetic correlation, and genome‐wide association in dense and complex empirical pedigrees. These approaches linearize (from N 2–3 to N ~1) computational effort while maintaining fidelity (r ~ 0.95) with the VC results and take advantage of parallel computing provided by central and graphics processing units (CPU and GPU). We show that the new approaches lead to a 104‐ to 106‐fold reduction in computational complexity—making voxel‐wise heritability, genetic correlation, and genome‐wide association studies (GWAS) analysis practical for large and complex samples such as those provided by the Amish and Human Connectome Projects (N = 406 and 1052 subjects, respectively) and UK Biobank (N = 31,681). These developments are shared in open‐source, SOLAR‐Eclipse software.
机译:国家和国际生物样本库的努力导致了大型和包容性成像遗传学数据集的收集,这些数据集能够检查遗传和环境因素对人类大脑疾病和健康的影响。高分辨率神经成像(~104-6 体素)和遗传(106-8 个单核苷酸多态性 [SNP] 变体)数据可在具有统计学意义的 (N = 103-5) 流行病学和疾病重点样本中获得。以这些数据集中提供的全分辨率进行成像遗传学分析是一项艰巨的计算任务,即使在受试者之间不相关的假设下也是如此。当考虑受试者之间的相关性时,计算复杂度上升为 ~N 2-3(其中 N 是样本量)。我们描述了快速、非迭代的简化,以加速经典方差成分 (VC) 方法,包括密集而复杂的经验系谱中的遗传力、遗传相关性和全基因组关联。这些方法线性化(从 N 2-3 到 N ~1)计算工作,同时保持 VC 结果的保真度 (r ~ 0.95),并利用中央和图形处理单元(CPU 和 GPU)提供的并行计算。我们表明,新方法使计算复杂性降低了 104 到 106 倍,这使得体素遗传性、遗传相关性和全基因组关联研究 (GWAS) 分析对于大型复杂样本非常实用,例如阿米什人和人类连接组项目(分别为 N = 406 和 1052 名受试者)和英国生物样本库(N = 31,681)提供的样本。这些开发成果在开源的 SOLAR-Eclipse 软件中共享。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号