首页> 美国卫生研究院文献>PLoS Computational Biology >Dilution and titration of cell-cycle regulators may control cell size in budding yeast
【2h】

Dilution and titration of cell-cycle regulators may control cell size in budding yeast

机译:细胞周期调节剂的稀释和滴定可控制发芽酵母中的细胞大小

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The size of a cell sets the scale for all biochemical processes within it, thereby affecting cellular fitness and survival. Hence, cell size needs to be kept within certain limits and relatively constant over multiple generations. However, how cells measure their size and use this information to regulate growth and division remains controversial. Here, we present two mechanistic mathematical models of the budding yeast (S. cerevisiae) cell cycle to investigate competing hypotheses on size control: inhibitor dilution and titration of nuclear sites. Our results suggest that an inhibitor-dilution mechanism, in which cell growth dilutes the transcriptional inhibitor Whi5 against the constant activator Cln3, can facilitate size homeostasis. This is achieved by utilising a positive feedback loop to establish a fixed size threshold for the Start transition, which efficiently couples cell growth to cell cycle progression. Yet, we show that inhibitor dilution cannot reproduce the size of mutants that alter the cell’s overall ploidy and WHI5 gene copy number. By contrast, size control through titration of Cln3 against a constant number of genomic binding sites for the transcription factor SBF recapitulates both size homeostasis and the size of these mutant strains. Moreover, this model produces an imperfect ‘sizer’ behaviour in G1 and a ‘timer’ in S/G2/M, which combine to yield an ‘adder’ over the whole cell cycle; an observation recently made in experiments. Hence, our model connects these phenomenological data with the molecular details of the cell cycle, providing a systems-level perspective of budding yeast size control.
机译:细胞的大小决定了细胞内所有生化过程的规模,从而影响细胞的适应性和存活率。因此,需要将细胞大小保持在一定的范围内,并在多个世代中保持相对恒定。但是,细胞如何测量其大小以及如何利用这些信息来调节生长和分裂仍存在争议。在这里,我们提出了萌芽酵母(酿酒酵母)细胞周期的两个机制数学模型,以研究关于大小控制的竞争性假设:抑制剂稀释和核位置滴定。我们的结果表明,一种抑制剂稀释机制(其中细胞生长会稀释转录抑制剂Whi5对抗恒定激活因子Cln3)可以促进体内大小的稳态。这是通过利用正反馈回路为“开始”过渡建立固定大小的阈值来实现的,该阈值可有效地将细胞生长与细胞周期进程耦合在一起。然而,我们证明抑制剂稀释不能复制改变细胞总体倍性和WHI5基因拷贝数的突变体大小。相比之下,通过针对恒定数目的转录因子SBF的基因组结合位点滴定Cln3进行大小控制,可以同时实现大小稳态和这些突变菌株的大小。此外,该模型在G1中产生不完美的“大小”行为,在S / G2 / M中产生“定时器”,两者结合在一起在整个细胞周期中产生“加法器”。最近在实验中所做的观察。因此,我们的模型将这些现象学数据与细胞周期的分子详细信息联系起来,从而提供了系统水平的出芽酵母大小控制方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号