首页> 美国卫生研究院文献>PLoS Computational Biology >Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size
【2h】

Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size

机译:迈向皮层柱理论:从尖峰神经元到相互作用的有限大小的神经群体

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50–2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations.
机译:神经种群方程(例如神经质量或场模型)被广泛用于大规模研究大脑活动。但是,这些模型与单个神经元的属性之间的关系尚不清楚。在这里,我们从随机连接的广义积分与发射神经元模型的微观模型出发,导出介观尺度上几个交互种群的方程。每个种群由50-2000个相同类型的神经元组成,但不同种群占不同神经元类型。我们发现的随机种群方程揭示了单神经元动力学中的峰值历史效应(如耐火性和适应性)如何与种群水平上的有限大小波动相互作用。随机介观方程的有效集成重现了从全峰值神经网络模型的微观模拟中获得的种群活动的统计行为。该理论描述了非线性出现的动力学,例如多稳态网络中的有限大小诱导的随机跃迁以及兴奋性和抑制性神经元的平衡网络中的同步。介观方程用于快速整合由八种神经元类型组成的皮层微电路模型,这使我们能够预测自发的种群活动以及对丘脑输入的诱发反应。我们的理论为基于单细胞和突触参数建立有限大小的神经种群动力学建模建立了通用框架,并提供了一种有效的方法来分析皮层回路和计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号