首页> 美国卫生研究院文献>Chemical Science >A metabologenomics strategy for rapid discovery of polyketides derived from modular polyketide synthases
【2h】

A metabologenomics strategy for rapid discovery of polyketides derived from modular polyketide synthases

机译:一种代谢基因组学策略用于快速发现源自模块化聚酮合酶的聚酮

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bioinformatics-guided metabolomics is a powerful means for the discovery of novel natural products. However, the application of such metabologenomics approaches on microbial polyketides, a prominent class of natural products with diverse bioactivities, remains largely hindered due to our limited understanding on the mass spectrometry behaviors of these metabolites. Here, we present a metabologenomics approach for the targeted discovery of polyketides biosynthesized by modular type I polyketide synthases. We developed the NegMDF workflow, which uses mass defect filtering (MDF) supported by bioinformatic structural prediction, to connect the biosynthetic gene clusters to corresponding metabolite ions obtained under negative ionization mode. The efficiency of the NegMDF workflow is illustrated by rapid characterization of 22 polyketides synthesized by three gene clusters from a well-characterized strain Streptomyces cattleya NRRL 8057, including cattleyatetronates, new members of polyketides containing a rare tetronate moiety. Our results showcase the effectiveness of the MDF-based metabologenomics workflow for analyzing microbial natural products, and will accelerate the genome mining of microbial polyketides.
机译:生物信息学引导的代谢组学是发现新型天然产物的有力手段。然而,由于我们对这些代谢物的质谱行为了解有限,这种代谢基因组学方法在微生物聚酮(一类具有不同生物活性的重要天然产物)上的应用仍然在很大程度上受到阻碍。在这里,我们提出了一种代谢基因组学方法,用于靶向发现由模块化 I 型聚酮合酶生物合成的聚酮。我们开发了 NegMDF 工作流程,该工作流程使用生物信息学结构预测支持的质量缺陷过滤 (MDF),将生物合成基因簇连接到在负电离模式下获得的相应代谢物离子。NegMDF 工作流程的效率通过快速表征由来自特征明确的菌株 Streptomyces cattleya NRRL 8057 的三个基因簇合成的 22 种聚酮来说明,包括 cattleyatetronates,这是含有稀有四酮酸部分的聚酮的新成员。我们的结果展示了基于 MDF 的代谢基因组学工作流程在分析微生物天然产物方面的有效性,并将加速微生物聚酮的基因组挖掘。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号