首页> 美国卫生研究院文献>PLoS Computational Biology >Protein Topology Determines Cysteine Oxidation Fate: The Case of Sulfenyl Amide Formation among Protein Families
【2h】

Protein Topology Determines Cysteine Oxidation Fate: The Case of Sulfenyl Amide Formation among Protein Families

机译:蛋白质拓扑决定半胱氨酸的氧化命运:蛋白质家族中亚磺酰胺形成的情况

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cysteine residues have a rich chemistry and play a critical role in the catalytic activity of a plethora of enzymes. However, cysteines are susceptible to oxidation by Reactive Oxygen and Nitrogen Species, leading to a loss of their catalytic function. Therefore, cysteine oxidation is emerging as a relevant physiological regulatory mechanism. Formation of a cyclic sulfenyl amide residue at the active site of redox-regulated proteins has been proposed as a protection mechanism against irreversible oxidation as the sulfenyl amide intermediate has been identified in several proteins. However, how and why only some specific cysteine residues in particular proteins react to form this intermediate is still unknown. In the present work using in-silico based tools, we have identified a constrained conformation that accelerates sulfenyl amide formation. By means of combined MD and QM/MM calculation we show that this conformation positions the NH backbone towards the sulfenic acid and promotes the reaction to yield the sulfenyl amide intermediate, in one step with the concomitant release of a water molecule. Moreover, in a large subset of the proteins we found a conserved beta sheet-loop-helix motif, which is present across different protein folds, that is key for sulfenyl amide production as it promotes the previous formation of sulfenic acid. For catalytic activity, in several cases, proteins need the Cysteine to be in the cysteinate form, i.e. a low pKa Cys. We found that the conserved motif stabilizes the cysteinate by hydrogen bonding to several NH backbone moieties. As cysteinate is also more reactive toward ROS we propose that the sheet-loop-helix motif and the constraint conformation have been selected by evolution for proteins that need a reactive Cys protected from irreversible oxidation. Our results also highlight how fold conservation can be correlated to redox chemistry regulation of protein function.
机译:半胱氨酸残基具有丰富的化学性质,并且在大量酶的催化活性中起着关键作用。然而,半胱氨酸易于被活性氧和氮物种氧化,导致其催化功能丧失。因此,半胱氨酸氧化正在成为一种相关的生理调节机制。已经提出在氧化还原调节的蛋白质的活性位点形成环状亚磺酰胺残基作为防止不可逆氧化的保护机制,因为已经在几种蛋白质中鉴定出了亚磺酰胺中间体。然而,尚不清楚如何以及为什么仅特定蛋白质中的某些特定半胱氨酸残基反应形成该中间体。在当前使用基于硅的工具的工作中,我们已经确定了约束构象,该构象加速了亚磺酰胺的形成。通过组合的MD和QM / MM计算,我们表明这一构象将NH主链定位于亚磺酸,并在一步伴随水分子释放的情况下促进了反应,从而生成了亚磺酰胺中间体。此外,在蛋白质的很大一部分中,我们发现了一个保守的β折叠环螺旋基序,该基序存在于不同的蛋白质折叠中,这对于生产亚磺酰胺是至关重要的,因为它促进了亚硫酸的先前形成。为了催化活性,在某些情况下,蛋白质需要半胱氨酸为半胱氨酸形式,即低pKa Cys。我们发现保守的基序通过氢键结合到几个NH主链部分来稳定半胱氨酸。由于半胱氨酸对ROS的反应性也更高,我们建议通过进化来选择需要保护不受不可逆氧化作用的反应性Cys的蛋白质的片状-环-螺旋基序和限制性构象。我们的研究结果还突出了如何将折叠保留与蛋白质功能的氧化还原化学调控相关联。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号