首页> 美国卫生研究院文献>ACS Omega >Development and Application of a Quantitative Model for Proximate and Ultimate Analysis of Flue-Cured Tobacco Based on Near-Infrared Spectroscopy
【2h】

Development and Application of a Quantitative Model for Proximate and Ultimate Analysis of Flue-Cured Tobacco Based on Near-Infrared Spectroscopy

机译:基于近红外光谱的烤烟近因和终极分析定量模型的开发与应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A methodology for predicting proximate and ultimate analysis data was developed by using near-infrared spectroscopy (NIR) combined with chemometric methods. The quantitative model has high accuracy, as evidenced by low root-mean-square-error of prediction (RMSEP) values (e.g., 0.41% for volatile matter and 0.29% for carbon). The model was further applied to tobaccos with distinct aroma profiles, and the predicted ultimate and proximate data lead to aroma classification with 86.6% accuracy. This methodology can be expanded to the aroma discrimination of imported tobaccos from Brazil, the United States, Canada, and Zimbabwe, demonstrating its broad reliability. Compared with traditional analyses, this NIR-based approach offers a fast and accurate method for large-scale tobacco evaluation, highlighting its potential for enhancing tobacco quality characterization through a quantifiable, digital, and high-throughput process.
机译:通过使用近红外光谱 (NIR) 结合化学计量学方法,开发了一种预测近似和最终分析数据的方法。定量模型具有很高的准确性,预测均方根误差 (RMSEP) 值(例如,挥发性物质为 0.41%,碳为 0.29%)证明了这一点。该模型进一步应用于具有不同香气特征的烟草,预测的最终和近似数据导致香气分类的准确率为 86.6%。这种方法可以扩展到对从巴西、美国、加拿大和津巴布韦进口的烟草进行香气鉴别,证明了其广泛的可靠性。与传统分析相比,这种基于 NIR 的方法为大规模烟草评估提供了一种快速准确的方法,突出了其通过可量化、数字化和高通量过程提高烟草质量表征的潜力。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号