首页> 美国卫生研究院文献>PLoS Computational Biology >Feedback Signals in Myelodysplastic Syndromes: Increased Self-Renewal of the Malignant Clone Suppresses Normal Hematopoiesis
【2h】

Feedback Signals in Myelodysplastic Syndromes: Increased Self-Renewal of the Malignant Clone Suppresses Normal Hematopoiesis

机译:骨髓增生异常综合征中的反馈信号:恶性克隆的自我更新增强抑制正常的造血功能。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Myelodysplastic syndromes (MDS) are triggered by an aberrant hematopoietic stem cell (HSC). It is, however, unclear how this clone interferes with physiologic blood formation. In this study, we followed the hypothesis that the MDS clone impinges on feedback signals for self-renewal and differentiation and thereby suppresses normal hematopoiesis. Based on the theory that the MDS clone affects feedback signals for self-renewal and differentiation and hence suppresses normal hematopoiesis, we have developed a mathematical model to simulate different modifications in MDS-initiating cells and systemic feedback signals during disease development. These simulations revealed that the disease initiating cells must have higher self-renewal rates than normal HSCs to outcompete normal hematopoiesis. We assumed that self-renewal is the default pathway of stem and progenitor cells which is down-regulated by an increasing number of primitive cells in the bone marrow niche – including the premature MDS cells. Furthermore, the proliferative signal is up-regulated by cytopenia. Overall, our model is compatible with clinically observed MDS development, even though a single mutation scenario is unlikely for real disease progression which is usually associated with complex clonal hierarchy. For experimental validation of systemic feedback signals, we analyzed the impact of MDS patient derived serum on hematopoietic progenitor cells in vitro: in fact, MDS serum slightly increased proliferation, whereas maintenance of primitive phenotype was reduced. However, MDS serum did not significantly affect colony forming unit (CFU) frequencies indicating that regulation of self-renewal may involve local signals from the niche. Taken together, we suggest that initial mutations in MDS particularly favor aberrant high self-renewal rates. Accumulation of primitive MDS cells in the bone marrow then interferes with feedback signals for normal hematopoiesis – which then results in cytopenia.
机译:异常增生综合症(MDS)由异常的造血干细胞(HSC)触发。但是,尚不清楚该克隆如何干扰生理血液形成。在这项研究中,我们遵循了以下假设:MDS克隆会撞击反馈信号以进行自我更新和分化,从而抑制正常的造血功能。基于MDS克隆影响自我更新和分化的反馈信号从而抑制正常造血的理论,我们开发了数学模型来模拟疾病发展过程中MDS起始细胞和系统反馈信号的不同修饰。这些模拟表明,疾病启动细胞必须比正常HSC具有更高的自我更新率,才能胜过正常的造血功能。我们认为自我更新是干细胞和祖细胞的默认途径,而骨髓小生境中越来越多的原始细胞(包括过早的MDS细胞)会下调自我更新。此外,增殖信号被血细胞减少症上调。总体而言,我们的模型与临床观察到的MDS发展是兼容的,即使对于真正的疾病进展(通常与复杂的克隆层次结构相关)而言,单个突变方案也不大可能。为了对系统反馈信号进行实验验证,我们分析了MDS患者来源的血清在体外对造血祖细胞的影响:实际上,MDS血清略微增加了增殖,而原始表型的维持却减少了。但是,MDS血清并未显着影响菌落形成单位(CFU)的频率,表明自我更新的调控可能涉及来自利基市场的局部信号。两者合计,我们建议MDS中的初始突变特别有利于异常的高自我更新率。然后,原始MDS细胞在骨髓中的积累会干扰正常造血的反馈信号,进而导致血细胞减少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号