首页> 美国卫生研究院文献>Chemical Science >Redefining the roles of alkali activators for porous carbon
【2h】

Redefining the roles of alkali activators for porous carbon

机译:重新定义碱活化剂在多孔碳中的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Alkali activation is a common method to prepare commercial porous carbon. In a mixed alkali activation system, the role of each individual alkali has generally been assumed to be the same as in a single alkali activation system, and the low corrosiveness of weak alkalis has mainly been emphasized. However, the intrinsic roles of the individual alkalis should be understood in detail and redefined to illuminate the activation pathways from the perspective of internal chemical reactions rather than corrosiveness. Herein, by combining in situ TG-MS analysis, DFT calculation and other characterizations, the activation processes were precisely tracked, and activation pathways were proposed. In the mixed alkali activation system, the strong alkali KOH served as the activation promoter, first decomposing into K2O, which then attacked the C–C bonds to form active reaction sites defined as pore seeds. The weak alkali K2CO3 acted as the activation pathway modifier; CO32− preferentially etched the pore seeds over K2O due to the lower reaction barrier of CO32− interacting with the pore seeds. Consequently, the rough etching reaction of KOH was replaced and suppressed by the gentler action of CO32−, forming more micropores. When the ratio of strong to weak alkali was 1 : 1, the obtained CK1K2-122 exhibited the highest microporosity (82.61%) and a high specific surface area (1962.18 m2 g−1). It exhibited a high specific capacitance of 296.7 F g−1 and excellent cycling stability with 98.3% retention after 10 000 cycles. The supercapacitor demonstrated a high energy density of 114.4 W h kg−1 at a power density of 17.5 kW kg−1, with a broad potential window of 3.5 V.
机译:碱活化是制备商业多孔碳的常用方法。在混合碱活化体系中,通常假设每个碱的作用与在单个碱活化体系中的作用相同,主要强调弱碱的低腐蚀性。然而,应详细了解各个碱的内在作用并重新定义,以便从内部化学反应而不是腐蚀性的角度阐明活化途径。本文通过结合原位 TG-MS 分析、DFT 计算和其他表征,精确跟踪活化过程,并提出活化途径。在混碱活化体系中,强碱 KOH 作为活化促进剂,首先分解成 K2O,然后攻击 C-C 键,形成定义为孔种子的活性反应位点。弱碱 K2CO3 作为激活途径修饰剂;由于 CO32− 与孔种子相互作用的反应势垒较低,因此 CO32− 优先蚀刻孔种子而不是 K2O。因此,KOH 的粗糙蚀刻反应被 CO32− 更温和的作用所取代和抑制,形成更多的微孔。当强碱与弱碱的比例为 1 : 1 时,获得的 CK1K2-122 表现出最高的微孔率 (82.61%) 和高比表面积 (1962.18 m2 g-1)。它表现出 296.7 F g-1 的高比电容和 98 的出色循环稳定性。10 000 次循环后保留率为 3%。超级电容器在 17.5 kW kg-1 的功率密度下表现出 114.4 W h kg-1 的高能量密度,具有 3.5 V 的宽电位窗口。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号