首页> 美国卫生研究院文献>PLoS Computational Biology >Optimization of Muscle Activity for Task-Level Goals Predicts Complex Changes in Limb Forces across Biomechanical Contexts
【2h】

Optimization of Muscle Activity for Task-Level Goals Predicts Complex Changes in Limb Forces across Biomechanical Contexts

机译:针对任务级目标的肌肉活动优化可预测跨生物力学环境的肢体力量的复杂变化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Optimality principles have been proposed as a general framework for understanding motor control in animals and humans largely based on their ability to predict general features movement in idealized motor tasks. However, generalizing these concepts past proof-of-principle to understand the neuromechanical transformation from task-level control to detailed execution-level muscle activity and forces during behaviorally-relevant motor tasks has proved difficult. In an unrestrained balance task in cats, we demonstrate that achieving task-level constraints center of mass forces and moments while minimizing control effort predicts detailed patterns of muscle activity and ground reaction forces in an anatomically-realistic musculoskeletal model. Whereas optimization is typically used to resolve redundancy at a single level of the motor hierarchy, we simultaneously resolved redundancy across both muscles and limbs and directly compared predictions to experimental measures across multiple perturbation directions that elicit different intra- and interlimb coordination patterns. Further, although some candidate task-level variables and cost functions generated indistinguishable predictions in a single biomechanical context, we identified a common optimization framework that could predict up to 48 experimental conditions per animal (n = 3) across both perturbation directions and different biomechanical contexts created by altering animals' postural configuration. Predictions were further improved by imposing experimentally-derived muscle synergy constraints, suggesting additional task variables or costs that may be relevant to the neural control of balance. These results suggested that reduced-dimension neural control mechanisms such as muscle synergies can achieve similar kinetics to the optimal solution, but with increased control effort (≈2×) compared to individual muscle control. Our results are consistent with the idea that hierarchical, task-level neural control mechanisms previously associated with voluntary tasks may also be used in automatic brainstem-mediated pathways for balance.
机译:最优性原则已被提出作为理解动物和人类运动控制的通用框架,很大程度上是基于它们预测理想运动任务中一般特征运动的能力。但是,将这些概念推广到原理证明之后,以了解在行为相关的运动任务期间从任务级控制到详细执行级肌肉活动和力量的神经机械转换是困难的。在猫的不受限制的平衡任务中,我们证明了达到任务级约束质量力和力矩的中心,同时将控制力最小化,可以在解剖上逼真的肌肉骨骼模型中预测肌肉活动和地面反作用力的详细模式。尽管优化通常用于解决运动层次结构单个级别上的冗余,但我们同时解决了肌肉和四肢的冗余,并将预测结果与跨多个扰动方向的实验测量结果直接进行了比较,从而得出了不同的内和外肢协调模式。此外,尽管某些候选任务级变量和成本函数在单个生物力学环境中产生了难以区分的预测,但我们确定了一个通用的优化框架,该框架可以在扰动方向和不同生物力学环境中预测每只动物多达48个实验条件(n = 3)通过改变动物的姿势来创建。通过施加来自实验的肌肉协同约束,进一步改善了预测,提示可能与平衡的神经控制有关的其他任务变量或成本。这些结果表明,降维神经控制机制(例如肌肉协同作用)可以实现与最佳解决方案相似的动力学,但是与单个肌肉控制相比,其控制工作量增加了约2倍。我们的研究结果与以前与自愿任务相关的分层,任务级神经控制机制也可以在自动脑干介导的平衡中使用的想法是一致的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号