首页> 美国卫生研究院文献>Ecology and Evolution >Antecedent Effect Models as an Exploratory Tool to Link Climate Drivers to Herbaceous Perennial Population Dynamics Data
【2h】

Antecedent Effect Models as an Exploratory Tool to Link Climate Drivers to Herbaceous Perennial Population Dynamics Data

机译:前因效应模型作为将气候驱动因素与多年生草本种群动态数据联系起来的探索性工具

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Understanding mechanisms and predicting natural population responses to climate is a key goal of Ecology. However, studies explicitly linking climate to population dynamics remain limited. Antecedent effect models are a set of statistical tools that capitalize on the evidence provided by climate and population data to select time windows correlated with a response (e.g., survival, reproduction). Thus, these models can serve as both a predictive and exploratory tool. We compare the predictive performance of antecedent effect models against simpler models and showcase their exploratory analysis potential by selecting a case study with high predictive power. We fit three antecedent effect models: (1) weighted mean models (WMM), which weigh the importance of monthly anomalies based on a Gaussian curve, (2) stochastic antecedent models (SAM), which weigh the importance of monthly anomalies using a Dirichlet process, and (3) regularized regressions using the Finnish horseshoe model (FHM), which estimate a separate effect size for each monthly anomaly. We compare these approaches to a linear model using a yearly climatic predictor and a null model with no predictors. We use demographic data from 77 natural populations of 34 plant species ranging between seven and 36 years in length. We then fit models to the asymptotic population growth rate (λ) and its underlying vital rates: survival, development, and reproduction. We find that models including climate do not consistently outperform null models. We hypothesize that the effect of yearly climate is too complex, weak, and confounded by other factors to be easily predicted using monthly precipitation and temperature data. On the other hand, in our case study, antecedent effect models show biologically sensible correlations between two precipitation anomalies and multiple vital rates. We conclude that, in temporal datasets with limited sample sizes, antecedent effect models are better suited as exploratory tools for hypothesis generation.
机译:了解机制和预测自然种群对气候的反应是 Ecology 的一个关键目标。然而,明确将气候与种群动态联系起来的研究仍然有限。前因效应模型是一组统计工具,它利用气候和人口数据提供的证据来选择与响应相关的时间窗口(例如,生存、繁殖)。因此,这些模型既可以作为预测工具,也可以作为探索工具。我们将前因效应模型的预测性能与更简单的模型进行比较,并通过选择具有高预测能力的案例研究来展示它们的探索性分析潜力。我们拟合了三个前因效应模型:(1) 加权均值模型 (WMM),它根据高斯曲线权衡每月异常的重要性,(2) 随机前因模型 (SAM),它使用狄利克雷过程权衡每月异常的重要性,以及 (3) 使用芬兰马蹄模型 (FHM) 的正则化回归,它估计每个月异常的单独效应量。我们将这些方法与使用年度气候预测因子的线性模型和没有预测因子的 null 模型进行了比较。我们使用了来自 34 种植物物种的 77 个自然种群的人口统计数据,长度从 7 年到 36 年不等。然后,我们将模型拟合到渐近种群增长率 (λ) 及其基本生命率:生存、发育和繁殖。我们发现,包括 climate 在内的模型并不总是优于 null 模型。我们假设年气候的影响过于复杂、微弱,并且被其他因素混淆,无法使用月降水和温度数据轻松预测。另一方面,在我们的案例研究中,前因效应模型显示了两种降水异常和多个生命率之间的生物学上合理的相关性。我们得出的结论是,在样本量有限的时间数据集中,前因效应模型更适合作为假设生成的探索性工具。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号