Metal oxide semiconductor-activated photocatalysis has become a promising sustainable technology for the mitigation of emerging organic pollutants. The rational design of a photocatalyst heterojunction allows the degradation of a broad range of organic contaminants. Herein, we optimized hydrothermal approaches for the facial synthesis of well-defined BiOBr/Cu2O heterojunction photocatalysts. Tuning the synthesis condition enhanced the interfacing of BiOBr and Cu2O nanostructures in the heterojunction photocatalyst, as confirmed by STEM, TEM, XPS, XRD, and BET analysis. The optimized BiOBr/Cu2O heterostructured photocatalyst demonstrated substantial activity in the degradation of both anionic and cationic dyes compared to the individual components. The enhanced nanocomposite exhibited complete degradation of glyphosate in 10 min of light irradiation and demonstrated high stability after five photocatalytic cycles. Our mechanistic and photoelectrochemical studies suggest that establishing an S-scheme heterojunction between BiOBr and Cu2O enhances the separation of photogenerated charge carriers and expands the redox potentials of the nanocomposite to allow high catalytic efficiency. These findings indicate that tuning the design of metal oxide heterojunctions promises applications in the remediation of a wide range of organic contaminants.
展开▼
机译:金属氧化物半导体激活光催化已成为一种很有前途的可持续技术,用于减轻新出现的有机污染物。光催化剂异质结的合理设计允许降解广泛的有机污染物。在此,我们优化了定义明确的 BiOBr/Cu 2 O 异质结光催化剂面部合成的水热方法。调整合成条件增强了异质结光催化剂中 BiOBr 和 Cu2O 纳米结构的界面,STEM、TEM、XPS、XRD 和 BET 分析证实了这一点。与单个组分相比,优化的 BiOBr/Cu2O 异质结构光催化剂在阴离子和阳离子染料的降解中表现出显著的活性。增强的纳米复合材料在 10 min 的光照射下表现出草甘膦的完全降解,并在 5 次光催化循环后表现出高稳定性。我们的机理和光电化学研究表明,在 BiOBr 和 Cu2O 之间建立 S 型异质结增强了光生载流子的分离,并扩大了纳米复合材料的氧化还原电位,从而实现高催化效率。这些发现表明,调整金属氧化物异质结的设计有望在修复各种有机污染物方面得到应用。
展开▼