首页> 美国卫生研究院文献>Human Brain Mapping >Tractography‐Based Automated Identification of Retinogeniculate Visual Pathway With Novel Microstructure‐Informed Supervised Contrastive Learning
【2h】

Tractography‐Based Automated Identification of Retinogeniculate Visual Pathway With Novel Microstructure‐Informed Supervised Contrastive Learning

机译:基于束成像的视网膜生殖视觉通路自动识别与新型微结构引导的监督对比学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The retinogeniculate visual pathway (RGVP) is responsible for carrying visual information from the retina to the lateral geniculate nucleus. Identification and visualization of the RGVP are important in studying the anatomy of the visual system and can inform the treatment of related brain diseases. Diffusion MRI (dMRI) tractography is an advanced imaging method that uniquely enables in vivo mapping of the 3D trajectory of the RGVP. Currently, identification of the RGVP from tractography data relies on expert (manual) selection of tractography streamlines, which is time‐consuming, has high clinical and expert labor costs, and is affected by inter‐observer variability. In this paper, we present a novel deep learning framework, DeepRGVP, to enable fast and accurate identification of the RGVP from dMRI tractography data. We design a novel microstructure‐informed supervised contrastive learning method that leverages both streamline label and tissue microstructure information to determine positive and negative pairs. We propose a new streamline‐level data augmentation method to address highly imbalanced training data, where the number of RGVP streamlines is much lower than that of non‐RGVP streamlines. In the experiments, we perform comparisons with several state‐of‐the‐art deep learning methods that were designed for tractography parcellation. Furthermore, to assess the generalizability of the proposed RGVP method, we apply our method to dMRI tractography data from neurosurgical patients with pituitary tumors. In comparison with the state‐of‐the‐art methods, we show superior RGVP identification results using DeepRGVP with significantly higher accuracy and F1 scores. In the patient data experiment, we show DeepRGVP can successfully identify RGVPs despite the effect of lesions affecting the RGVPs. Overall, our study shows the high potential of using deep learning to automatically identify the RGVP.
机译:视网膜膝状视觉通路 (RGVP) 负责将视觉信息从视网膜传递到外侧膝状核。RGVP 的识别和可视化对于研究视觉系统的解剖结构很重要,并且可以为相关脑部疾病的治疗提供信息。弥散 MRI (dMRI) 束造影术是一种先进的成像方法,能够独特地实现 RGVP 的 3D 轨迹的体内映射。目前,从牵引成像数据中鉴定 RGVP 依赖于专家(手动)选择牵引成像流线,这很耗时,临床和专家劳动力成本高,并且受观察者间差异的影响。在本文中,我们提出了一种新的深度学习框架 DeepRGVP,以便从 dMRI 束成像数据中快速准确地识别 RGVP。我们设计了一种新的微观结构知情监督对比学习方法,该方法利用流线标签和组织微观结构信息来确定阳性和阴性对。我们提出了一种新的流线级数据增强方法来解决高度不平衡的训练数据,其中 RGVP 流线的数量远低于非 RGVP 流线的数量。在实验中,我们与几种专为束成像分割而设计的最先进的深度学习方法进行了比较。此外,为了评估所提出的 RGVP 方法的普遍性,我们将我们的方法应用于垂体瘤神经外科患者的 dMRI 束成像数据。与最先进的方法相比,我们使用 DeepRGVP 展示了卓越的 RGVP 鉴定结果,具有明显更高的准确性和 F1 分数。在患者数据实验中,我们表明 DeepRGVP 可以成功识别 RGVP,尽管病变会影响 RGVP。总体而言,我们的研究表明使用深度学习自动识别 RGVP 的巨大潜力。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号