首页> 美国卫生研究院文献>Human Brain Mapping >Prediction of Post Traumatic Epilepsy Using MR‐Based Imaging Markers
【2h】

Prediction of Post Traumatic Epilepsy Using MR‐Based Imaging Markers

机译:使用基于 MR 的成像标志物预测创伤后癫痫

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Post‐traumatic epilepsy (PTE) is a debilitating neurological disorder that develops after traumatic brain injury (TBI). Despite the high prevalence of PTE, current methods for predicting its occurrence remain limited. In this study, we aimed to identify imaging‐based markers for the prediction of PTE using machine learning. Specifically, we examined three imaging features: Lesion volumes, resting‐state fMRI‐based measures of functional connectivity, and amplitude of low‐frequency fluctuation (ALFF). We employed three machine‐learning methods, namely, kernel support vector machine (KSVM), random forest, and an artificial neural network (NN), to develop predictive models. Our results showed that the KSVM classifier, with all three feature types as input, achieved the best prediction accuracy of 0.78 AUC (area under the receiver operating characteristic (ROC) curve) using nested cross‐validation. Furthermore, we performed voxel‐wise and lobe‐wise group difference analyses to investigate the specific brain regions and features that the model found to be most helpful in distinguishing PTE from non‐PTE populations. Our statistical analysis uncovered significant differences in bilateral temporal lobes and cerebellum between PTE and non‐PTE groups. Overall, our findings demonstrate the complementary prognostic value of MR‐based markers in PTE prediction and provide new insights into the underlying structural and functional alterations associated with PTE.
机译:创伤后癫痫 (PTE) 是一种在创伤性脑损伤 (TBI) 后发展的使人衰弱的神经系统疾病。尽管 PTE 的患病率很高,但目前预测其发生的方法仍然有限。在这项研究中,我们旨在使用机器学习确定用于预测 PTE 的基于成像的标志物。具体来说,我们检查了三个影像学特征:病变体积、基于静息态 fMRI 的功能连接测量和低频波动幅度 (ALFF)。我们采用了三种机器学习方法,即核支持向量机 (KSVM)、随机森林和人工神经网络 (NN),来开发预测模型。我们的结果表明,以所有三种特征类型为输入的 KSVM 分类器使用嵌套交叉验证实现了 0.78 AUC (受试者工作特征 (ROC) 曲线下面积)的最佳预测精度。此外,我们进行了体素和叶组差异分析,以研究模型发现最有助于区分 PTE 和非 PTE 人群的特定大脑区域和特征。我们的统计分析发现 PTE 组和非 PTE 组之间双侧颞叶和小脑的显着差异。总体而言,我们的研究结果证明了基于 MR 的标志物在 PTE 预测中的互补预后价值,并为与 PTE 相关的潜在结构和功能改变提供了新的见解。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号