首页> 美国卫生研究院文献>Ecology and Evolution >Monitoring Animal Populations With Cameras Using Open Multistate N‐Mixture Models
【2h】

Monitoring Animal Populations With Cameras Using Open Multistate N‐Mixture Models

机译:使用开放、多状态、n 混合物模型通过相机监测动物种群

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Remote cameras have become a mainstream tool for studying wildlife populations. For species whose developmental stages or states are identifiable in photographs, there are opportunities for tracking population changes and estimating demographic rates. Recent developments in hierarchical models allow for the estimation of ecological states and rates over time for unmarked animals whose states are known. However, this powerful class of models has been underutilized because they are computationally intensive, and model outputs can be difficult to interpret. Here, we use simulation to show how camera data can be analyzed with multistate, Dail‐Madsen (hereafter multistate DM) models to estimate abundance, survival, and recruitment. We evaluated four commonly encountered scenarios arising from camera trap data (low and high abundance and 25% and 50% missing data) each with 18 different sample size combinations (camera sites = 40, 250; surveys = 4, 8, and 12; and years = 2, 5, 10) and evaluated the bias and precision of abundance, survival, and recruitment estimates. We also analyzed our empirical camera data on moose ( Alces alces ) with multistate DM models and compared inference with telemetry studies from the same time and region to assess the accuracy of camera studies to track moose populations. Most scenarios recovered the known parameters from our simulated data with higher accuracy and increased precision for scenarios with more sites, surveys, and/or years. Large amounts of missing data and fewer camera sites, especially at higher abundances, reduced accuracy, and precision of survival and recruitment. Our empirical analysis provided biologically realistic estimates of moose survival and recruitment and recovered the pattern of moose abundance across the region. Multistate DM models can be used for estimating demographic parameters from camera data when developmental states are clearly identifiable. We discuss several avenues for future research and caveats for using multistate DM models for large‐scale population monitoring.
机译:远程相机已成为研究野生动物种群的主流工具。对于在照片中可识别其发育阶段或状态的物种,有机会追踪种群变化和估计种群比率。分层模型的最新发展允许估计状态已知的未标记动物的生态状态和速率随时间的变化。然而,这类强大的模型一直没有得到充分利用,因为它们是计算密集型的,并且模型输出可能难以解释。在这里,我们使用仿真来展示如何使用多态 Dail-Madsen(以下简称多态 DM)模型分析相机数据,以估计丰度、存活率和募集量。我们评估了相机陷阱数据产生的四种常见情况(低丰度和高丰度以及 25% 和 50% 缺失数据),每种情况有 18 种不同的样本量组合(相机地点 = 40、250;调查 = 4、8 和 12;和年份 = 2、5、10),并评估了丰度、存活率和募集估计的偏差和精度。我们还使用多状态 DM 模型分析了驼鹿 ( Alces alces ) 的经验相机数据,并将推理与同一时间和地区的遥测研究进行比较,以评估相机研究跟踪驼鹿种群的准确性。大多数场景从我们的模拟数据中恢复了已知参数,具有更高的准确性,并且对于具有更多站点、调查和/或年份的场景,精度更高。大量缺失数据和较少的相机位点,尤其是在丰度较高时,降低了生存和招募的准确性和精确度。我们的实证分析提供了驼鹿存活和招募的生物学现实估计,并恢复了整个地区驼鹿丰富的模式。当发育状态清晰可辨时,多态 DM 模型可用于从相机数据中估计人口统计参数。我们讨论了未来研究的几种途径以及使用多状态 DM 模型进行大规模种群监测的注意事项。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号