首页> 美国卫生研究院文献>Ecology and Evolution >An Ecologist‐Friendly R Workflow for Expediting Species‐Level Classification of Camera Trap Images
【2h】

An Ecologist‐Friendly R Workflow for Expediting Species‐Level Classification of Camera Trap Images

机译:生态学家友好的 R 工作流程用于加快相机陷阱图像的物种级分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Camera trapping has become increasingly common in ecological studies, but is hindered by analyzing large datasets. Recently, artificial intelligence (deep learning models in particular) has emerged as a promising solution. However, applying deep learning for images processing is complex and often requires programming skills in Python, reducing its accessibility. Some authors addressed this issue with user‐friendly software, and a further progress was the transposition of deep learning to R, a statistical language frequently used by ecologists, enhancing flexibility and customization of deep learning models without advanced computer expertise. We aimed to develop a user‐friendly workflow based on R scripts to streamline the entire process, from selecting to classifying camera trap images. Our workflow integrates the MegaDetector object detector for labelling images and custom training of the state‐of‐the‐art YOLOv8 model, together with potential for offline image augmentation to manage imbalanced datasets. Inference results are stored in a database compatible with Timelapse for quality checking of model predictions. We tested our workflow on images collected within a project targeting medium and large mammals of Central Italy, and obtained an overall precision of 0.962, a recall of 0.945, and a mean average precision of 0.913 for a training set of only 1000 pictures per species. Furthermore, the custom model achieved 91.8% of correct species‐level classifications on a set of unclassified images, reaching 97.1% for those classified with > 90% confidence. YOLO, a fast and light deep learning architecture, enables application of the workflow even on resource‐limited machines, and integration with image augmentation makes it useful even during early stages of data collection. All R scripts and pretrained models are available to enable adaptation of the workflow to other contexts, plus further development.
机译:相机陷印在生态学研究中变得越来越普遍,但受到分析大型数据集的阻碍。最近,人工智能(尤其是深度学习模型)已成为一种很有前途的解决方案。但是,将深度学习应用于图像处理很复杂,通常需要 Python 编程技能,从而降低了其可访问性。一些作者使用用户友好的软件解决了这个问题,进一步的进展是将深度学习转化为 R,这是一种生态学家经常使用的统计语言,无需高级计算机专业知识即可增强深度学习模型的灵活性和定制性。我们的目标是基于 R 脚本开发一个用户友好的工作流程,以简化从选择到分类相机陷阱图像的整个过程。我们的工作流程集成了用于标记图像的 MegaDetector 对象检测器和最先进的 YOLOv8 模型的自定义训练,以及离线图像增强的潜力,以管理不平衡的数据集。推理结果存储在与 Timelapse 兼容的数据库中,用于模型预测的质量检查。我们在针对意大利中部中型和大型哺乳动物的项目中收集的图像上测试了我们的工作流程,对于每个物种只有 1000 张图片的训练集,获得了 0.962 的总体精度、0.945 的召回率和 0.913 的平均精度。此外,定制模型达到了 91。在一组未分类图像上,8% 的物种级正确分类,对于以 90% 置信度分类的物种>达到 97.1%。YOLO 是一种快速、轻便的深度学习架构,即使在资源有限的机器上也能应用工作流程,并且与图像增强的集成使其即使在数据收集的早期阶段也很有用。所有 R 脚本和预训练模型都可用于使工作流程适应其他上下文,并进一步开发。

著录项

  • 期刊名称 Ecology and Evolution
  • 作者

    L Petroni; L Natucci; A Massolo;

  • 作者单位
  • 年(卷),期 2024(14),12
  • 年度 2024
  • 页码 e70544
  • 总页数 8
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

    机译:相机陷阱;深度学习;图像分类;R 脚本;工作流程;YOLO;
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号