首页> 美国卫生研究院文献>Ecology and Evolution >Venturing Into the Unknown: The Importance of Variable Selection When Modelling Alien Species Under Non‐Analogue Climatic Conditions
【2h】

Venturing Into the Unknown: The Importance of Variable Selection When Modelling Alien Species Under Non‐Analogue Climatic Conditions

机译:探索未知领域:在非模拟气候条件下对外来物种进行建模时变量选择的重要性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Species distribution models (SDMs) are widely used to address species' responses to bioclimatic conditions in the fields of ecology, biogeography and conservation. Among studies that have addressed reasons for model prediction variability, the impact of climatic variable selection has received limited attention and is rarely assessed in sensitivity analyses. Here, we tested the assumption that this aspect of model design is a major source of uncertainty, especially when projections are made to non‐analogue climates. As a study system, we used 142 alien plant species introduced to the sub‐Antarctic islands. Based on global occurrence data, we fitted SDMs as functions of seven bioclimatic variable sets that only differed in the identity of two temperature variables. Moreover, we calculated the overlap between the island's climatic conditions and the niches the species have realised outside of the islands. Despite comparable internal evaluation metrics, projections of these models were in sharp contrast with each other, with some models predicting the sub‐Antarctic islands' climate to be almost ubiquitously suitable to most species and others unsuitable to almost all species. In particular, the mean temperature of the warmest month led to strong underpredictions of the SDMs, while its replacement by the mean temperature of the coldest month led to massive overpredictions. Partitioning the variance in projections demonstrated that predictor identity was its most important source, followed by island and species identity. The size of area projected to be suitable was also related to the overlap in predictor values realised in the global range of species (outside of the islands) and on the islands. Our findings emphasise the importance of bioclimatic variable selection in SDMs, especially when making projections to non‐analogue climates. Such extrapolations are often required, especially when using SDMs to assess invasion risk under both current and future climates.
机译:物种分布模型 (SDM) 广泛用于解决生态学、生物地理学和保护领域物种对生物气候条件的反应。在解决模型预测可变性原因的研究中,气候变量选择的影响受到的关注有限,并且很少在敏感性分析中进行评估。在这里,我们测试了模式设计的这一方面是不确定性的主要来源的假设,尤其是在对非模拟气候进行预测时。作为一个研究系统,我们使用了 142 种引入亚南极岛屿的外来植物物种。根据全球发生数据,我们将 SDM 拟合为 7 个生物气候变量集的函数,这些变量集仅在两个温度变量的同一性上有所不同。此外,我们还计算了该岛的气候条件与该物种在岛屿外实现的生态位之间的重叠。尽管内部评估指标具有可比性,但这些模型的预测彼此形成鲜明对比,一些模型预测亚南极岛屿的气候几乎无处不在地适合大多数物种,而另一些模型则不适合几乎所有物种。特别是,最热月份的平均温度导致对 SDM 的强烈低估,而它被最冷月份的平均温度取代则导致大量高估。对预测中的方差进行分区表明,预测因子身份是其最重要的来源,其次是岛屿和物种身份。预计适宜的区域大小也与全球物种范围(岛屿以外)和岛屿上实现的预测值的重叠有关。我们的研究结果强调了 SDM 中生物气候变量选择的重要性,尤其是在对非模拟气候进行预测时。通常需要进行这样的推断,尤其是在使用 SDM 评估当前和未来气候下的入侵风险时。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号