首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Predicting the Wear Amount of Tire Tread Using 1D−CNN
【2h】

Predicting the Wear Amount of Tire Tread Using 1D−CNN

机译:使用 1D−CNN 预测轮胎胎面的磨损量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Since excessively worn tires pose a significant risk to vehicle safety, it is crucial to monitor tire wear regularly. This study aimed to verify the efficient tire wear prediction algorithm proposed in a previous modeling study, which minimizes the required input data, and use driving test data to validate the method. First, driving tests were conducted with tires at various wear levels to measure internal accelerations. The acceleration signals were then screened using empirical functions to exclude atypical data before proceeding with the machine learning process. Finally, a tire wear prediction algorithm based on a 1D−CNN with bottleneck features was developed and evaluated. The developed algorithm showed an RMSE of 5.2% (or 0.42 mm) using only the acceleration signals. When tire pressure and vertical load were included, the prediction error was reduced by 11.5%, resulting in an RMSE of 4.6%. These findings suggest that the 1D−CNN approach is an efficient method for predicting tire wear states, requiring minimal input data. Additionally, it supports the potential usefulness of the intelligent tire technology framework proposed in the modeling study.
机译:由于过度磨损的轮胎会对车辆安全构成重大风险,因此定期监测轮胎磨损至关重要。本研究旨在验证先前建模研究中提出的高效轮胎磨损预测算法,该算法最大限度地减少了所需的输入数据,并使用驾驶测试数据来验证该方法。首先,对不同磨损水平的轮胎进行驾驶测试,以测量内部加速度。然后使用经验函数筛选加速度信号,以排除非典型数据,然后再进行机器学习过程。最后,开发并评估了一种基于具有瓶颈特征的 1D−CNN 的轮胎磨损预测算法。开发的算法显示,仅使用加速度信号的 RMSE 为 5.2%(或 0.42 mm)。当包括轮胎压力和垂直载荷时,预测误差降低了 11.5%,导致 RMSE 为 4.6%。这些发现表明,1D-CNN 方法是预测轮胎磨损状态的有效方法,需要最少的输入数据。此外,它还支持建模研究中提出的智能轮胎技术框架的潜在有用性。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号