首页> 美国卫生研究院文献>Ecology and Evolution >Plasticity in Hydraulic Architecture: Riparian Trees Respond to Increased Temperatures With Genotype‐Specific Adjustments to Leaf Traits
【2h】

Plasticity in Hydraulic Architecture: Riparian Trees Respond to Increased Temperatures With Genotype‐Specific Adjustments to Leaf Traits

机译:水利结构中的可塑性:河岸树木通过对叶片性状的基因型特异性调整来响应温度升高

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Climate means and variability are shifting rapidly, leading to mismatches between climate and locally adapted plant traits. Phenotypic plasticity, the ability of a plant to respond to environmental conditions within a lifetime, may provide a buffer for plants to persist under increasing temperature and water stress. We used two reciprocal common gardens across a steep temperature gradient to investigate plasticity in six populations of Fremont cottonwood, an important foundation tree species in arid riparian ecosystems. We investigated two components of leaf hydraulic architecture: Leaf venation and stomatal morphology, both of which regulate leaf water potential and photosynthesis. These traits will likely affect plant performance under climate stressors, but it is unclear whether they are controlled by genetic or environmental factors and whether they respond to the environment in parallel or independent directions. We found that: (1) Populations had divergent responses to a hotter growing environment, increasing or decreasing vein density. (2) Populations showed surprisingly independent responses of venation vs. stomatal traits. (3) As a result of these different responses, plasticity in hydraulic architecture traits was not predictable from historic climate conditions at population source locations and often varied substantially within populations. (4) Hydraulic architecture was clearly linked to growth, with higher vein and stomatal density predicting greater tree growth in the hottest growing environment. However, higher plasticity in these traits did not increase average growth across multiple environments. Thus, P. fremontii populations and genotypes vary in their capacity to adjust their leaf hydraulic architecture and support growth in contrasting environments, but this plasticity is not clearly predictable or beneficial. Identifying genotypes suitable for future conditions will depend on the relative importance of multiple traits and on both evolutionary and ecological responses to changing temperature and water availability.
机译:气候平均值和变异性正在迅速变化,导致气候与当地适应的植物性状不匹配。表型可塑性,即植物在一生中对环境条件做出反应的能力,可以为植物在不断升高的温度和水胁迫下持续存在提供缓冲。我们在陡峭的温度梯度上使用了两个互惠的公共花园来研究 Fremont 白杨木的六个种群的可塑性,Fremont 白杨木是干旱河岸生态系统中的重要基础树种。我们研究了叶片水力结构的两个组成部分:叶片脉络和气孔形态,两者都调节叶片水势和光合作用。这些性状可能会影响植物在气候压力下的表现,但目前尚不清楚它们是否受遗传或环境因素控制,以及它们是否以平行或独立的方向对环境做出反应。我们发现: (1) 种群对更热的生长环境、增加或减少叶脉密度的反应不同。(2) 种群表现出脉络与气孔性状的令人惊讶的独立反应。(3) 由于这些不同的响应,水力结构特征的可塑性无法从种群源位置的历史气候条件中预测,并且通常在种群内差异很大。(4) 水力结构与生长明显相关,较高的叶脉和气孔密度预示着在最热的生长环境中树木生长得更大。然而,这些性状的较高可塑性并没有增加多个环境中的平均生长。因此,P. fremontii 种群和基因型在调整其叶片水力结构和支持在对比环境中生长的能力方面有所不同,但这种可塑性并不明显可预测或有益。确定适合未来条件的基因型将取决于多种性状的相对重要性,以及进化和生态对温度变化和水可用性的反应。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号