首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >A Lightweight Centralized Collaborative Truncated Signed Distance Function-Based Dense Simultaneous Localization and Mapping System for Multiple Mobile Vehicles
【2h】

A Lightweight Centralized Collaborative Truncated Signed Distance Function-Based Dense Simultaneous Localization and Mapping System for Multiple Mobile Vehicles

机译:适用于多辆移动车辆的轻量级、集中式、协作式、基于截断有符号距离函数的密集同步定位和地图构建系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Simultaneous Localization And Mapping (SLAM) algorithms play a critical role in autonomous exploration tasks requiring mobile robots to autonomously explore and gather information in unknown or hazardous environments where human access may be difficult or dangerous. However, due to the resource-constrained nature of mobile robots, they are hindered from performing long-term and large-scale tasks. In this paper, we propose an efficient multi-robot dense SLAM system that utilizes a centralized structure to alleviate the computational and memory burdens on the agents (i.e. mobile robots). To enable real-time dense mapping of the agent, we design a lightweight and accurate dense mapping method. On the server, to find correct loop closure inliers, we design a novel loop closure detection method based on both visual and dense geometric information. To correct the drifted poses of the agents, we integrate the dense geometric information along with the trajectory information into a multi-robot pose graph optimization problem. Experiments based on pre-recorded datasets have demonstrated our system’s efficiency and accuracy. Real-world online deployment of our system on the mobile vehicles achieved a dense mapping update rate of ∼14 frames per second (fps), a onboard mapping RAM usage of ∼3.4%, and a bandwidth usage of ∼302 KB/s with a Jetson Xavier NX.
机译:同步定位和地图构建 (SLAM) 算法在自主探索任务中发挥着关键作用,这些任务要求移动机器人在人类可能难以进入或危险的未知或危险环境中自主探索和收集信息。然而,由于移动机器人的资源受限,它们无法执行长期和大规模的任务。在本文中,我们提出了一种高效的多机器人密集 SLAM 系统,该系统利用集中式结构来减轻代理(即移动机器人)的计算和内存负担。为了实现代理的实时密集映射,我们设计了一种轻量级且准确的密集映射方法。在服务器上,为了找到正确的环闭合内部值,我们设计了一种基于视觉和密集几何信息的新型环闭合检测方法。为了纠正智能体的漂移姿态,我们将密集的几何信息与轨迹信息一起整合到一个多机器人姿态图优化问题中。基于预先记录的数据集的实验证明了我们系统的效率和准确性。在移动车辆上实际在线部署我们的系统实现了 ∼14 帧/秒 (fps) 的密集映射更新速率、∼3.4% 的板载映射 RAM 使用率和 ∼302 KB/s 的带宽使用率。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号