首页>
美国卫生研究院文献>Sensors (Basel Switzerland)
>Discrimination of Explosive Residues by Standoff Sensing Using Anodic Aluminum Oxide Microcantilever Laser Absorption Spectroscopy with Kernel-Based Machine Learning
【2h】
Discrimination of Explosive Residues by Standoff Sensing Using Anodic Aluminum Oxide Microcantilever Laser Absorption Spectroscopy with Kernel-Based Machine Learning
Standoff laser absorption spectroscopy (LAS) has attracted considerable interest across many applications for environmental safety. Herein, we propose an anodic aluminum oxide (AAO) microcantilever LAS combined with machine learning (ML) for sensitive and selective standoff discrimination of explosive residues. A nanoporous AAO microcantilever with a thickness of <1 μm was fabricated using a micromachining process; its spring constant (18.95 mN/m) was approximately one-third of that of a typical Si microcantilever (53.41 mN/m) with the same dimensions. The standoff infrared (IR) spectra of pentaerythritol tetranitrate, cyclotrimethylene trinitramine, and trinitrotoluene were measured using our AAO microcantilever LAS over a wide range of wavelengths, and they closely matched the spectra obtained using standard Fourier transform infrared spectroscopy. The standoff IR spectra were fed into ML models, such as kernel extreme learning machines (KELMs), support vector machines (SVMs), random forest (RF), and backpropagation neural networks (BPNNs). Among these four ML models, the kernel-based ML models (KELM and SVM) were found to be efficient learning models able to satisfy both a high prediction accuracy (KELM: 94.4%, SVM: 95.8%) and short hyperparameter optimization time (KELM: 5.9 s, SVM: 7.6 s). Thus, the AAO microcantilever LAS with kernel-based learners could emerge as an efficient sensing method for safety monitoring.
展开▼
机译:远距离激光吸收光谱 (LAS) 在许多环境安全应用中引起了相当大的兴趣。在此,我们提出了一种阳极氧化铝 (AAO) 微悬臂 LAS 与机器学习 (ML) 相结合,用于对爆炸物残留物进行灵敏和选择性的对峙判别。采用微机械加工工艺制备了厚度为 <1 μm 的纳米多孔 AAO 微悬臂;其弹簧常数 (18.95 mN/m) 大约是相同尺寸的典型 Si 微悬臂 (53.41 mN/m) 的三分之一。使用我们的 AAO 微悬臂式 LAS 在较宽的波长范围内测量了季戊四醇四硝酸酯、环三亚甲基三硝胺和三硝基甲苯的远距离红外 (IR) 光谱,它们与使用标准傅里叶变换红外光谱获得的光谱非常匹配。远距离红外光谱被馈送到 ML 模型中,例如内核极限学习机 (KELM)、支持向量机 (SVM)、随机森林 (RF) 和反向传播神经网络 (BPNN)。在这四个 ML 模型中,基于内核的 ML 模型(KELM 和 SVM)被发现是高效的学习模型,能够满足高预测精度(KELM:94.4%,SVM:95.8%)和较短的超参数优化时间(KELM:5.9 s,SVM:7.6 s)。因此,具有基于内核的学习器的 AAO 微悬臂 LAS 可能成为一种有效的安全监测传感方法。
展开▼