首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Multi-Strategy Bald Eagle Search Algorithm Embedded Orthogonal Learning for Wireless Sensor Network (WSN) Coverage Optimization
【2h】

Multi-Strategy Bald Eagle Search Algorithm Embedded Orthogonal Learning for Wireless Sensor Network (WSN) Coverage Optimization

机译:用于无线传感器网络 (WSN) 覆盖优化的多策略 Bald Eagle 搜索算法嵌入式正交学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Coverage control is a fundamental and critical issue in plentiful wireless sensor network (WSN) applications. Aiming at the high-dimensional optimization problem of sensor node deployment and the complexity of the monitoring area, an orthogonal learning multi-strategy bald eagle search (OLMBES) algorithm is proposed to optimize the location deployment of sensor nodes. This paper incorporates three kinds of strategies into the bald eagle search (BES) algorithm, including Lévy flight, quasi-reflection-based learning, and quadratic interpolation, which enhances the global exploration ability of the algorithm and accelerates the convergence speed. Furthermore, orthogonal learning is integrated into BES to improve the algorithm’s robustness and premature convergence problem. By this way, population search information is fully utilized to generate a more superior position guidance vector, which helps the algorithm jump out of the local optimal solution. Simulation results on CEC2014 benchmark functions reveal that the optimization performance of the proposed approach is better than that of the existing method. On the WSN coverage optimization problem, the proposed method has greater network coverage ratio, node uniformity, and stronger optimization stability when compared to other state-of-the-art algorithms.
机译:覆盖控制是大量无线传感器网络 (WSN) 应用中的一个基本和关键问题。针对传感器节点部署的高维优化问题和监控区域的复杂性,提出了一种正交学习多策略秃鹰搜索 (OLMBES) 算法来优化传感器节点的定位部署。文中将 Lévy 飞行、基于准反射的学习和二次插值三种策略融入到秃鹰搜索 (BES) 算法中,增强了算法的全局探索能力,加快了收敛速度。此外,将正交学习集成到 BES 中,以提高算法的鲁棒性和过早收敛问题。通过这种方式,充分利用种群搜索信息生成更优越的位置引导向量,有助于算法跳出局部最优解。在CEC2014基准函数上的仿真结果表明,所提方法的优化性能优于现有方法。在 WSN 覆盖优化问题上,与其他最先进的算法相比,所提方法具有更大的网络覆盖率、节点均匀性和更强的优化稳定性。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号