首页> 美国卫生研究院文献>Frontiers in Behavioral Neuroscience >Siamese Network-Based All-Purpose-Tracker a Model-Free Deep Learning Tool for Animal Behavioral Tracking
【2h】

Siamese Network-Based All-Purpose-Tracker a Model-Free Deep Learning Tool for Animal Behavioral Tracking

机译:Siamese Network-based All-Purpose-Tracker一种用于动物行为跟踪的无模型深度学习工具

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Accurate tracking is the basis of behavioral analysis, an important research method in neuroscience and many other fields. However, the currently available tracking methods have limitations. Traditional computer vision methods have problems in complex environments, and deep learning methods are hard to be applied universally due to the requirement of laborious annotations. To address the trade-off between accuracy and universality, we developed an easy-to-use tracking tool, Siamese Network-based All-Purpose Tracker (SNAP-Tracker), a model-free tracking software built on the Siamese network. The pretrained Siamese network offers SNAP-Tracker a remarkable feature extraction ability to keep tracking accuracy, and the model-free design makes it usable directly before laborious annotations and network refinement. SNAP-Tracker provides a “tracking with detection” mode to track longer videos with an additional detection module. We demonstrate the stability of SNAP-Tracker through different experimental conditions and different tracking tasks. In short, SNAP-Tracker provides a general solution to behavioral tracking without compromising accuracy. For the user’s convenience, we have integrated the tool into a tidy graphic user interface and opened the source code for downloading and using (https://github.com/slh0302/SNAP).
机译:准确跟踪是行为分析的基础,行为分析是神经科学和许多其他领域的重要研究方法。但是,当前可用的跟踪方法存在局限性。传统的计算机视觉方法在复杂环境中存在问题,深度学习方法由于需要费力的注释而难以普遍应用。为了解决准确性和通用性之间的权衡问题,我们开发了一种易于使用的跟踪工具,即基于 Siamese Network 的 All-Purpose Tracker (SNAP-Tracker),这是一款基于 Siamese 网络构建的无模型跟踪软件。预训练的 Siamese 网络为 SNAP-Tracker 提供了卓越的特征提取能力,以保持跟踪准确性,并且无模型设计使其可以在费力的注释和网络优化之前直接使用。SNAP-Tracker 提供“带检测的跟踪”模式,通过额外的检测模块跟踪较长的视频。我们通过不同的实验条件和不同的跟踪任务证明了 SNAP-Tracker 的稳定性。简而言之,SNAP-Tracker 为行为跟踪提供了通用解决方案,而不会影响准确性。为了方便用户,我们将该工具集成到一个整洁的图形用户界面中,并开放源代码以供下载和使用 (https://github.com/slh0302/SNAP)。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号