首页> 美国卫生研究院文献>Computational and Mathematical Methods in Medicine >Medical Image Segmentation Using Fruit Fly Optimization and Density Peaks Clustering
【2h】

Medical Image Segmentation Using Fruit Fly Optimization and Density Peaks Clustering

机译:使用果蝇优化和密度峰聚类的医学图像分割

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we propose a novel algorithm for medical image segmentation, which combines the density peaks clustering (DPC) with the fruit fly optimization algorithm, and it has the following advantages. Firstly, it avoids the problem of DPC that needs to artificially select parameters (such as the number of clusters) in its decision graph and thus can automatically determine their values. Secondly, our algorithm uses random step size, instead of the fixed step size as in the fruit fly optimization algorithm, which helps avoid falling into local optima. Thirdly, our algorithm selects the cut-off distance and the cluster centers using the image entropy value and can better capture the structures of the image. Experiments on benchmark dataset and proprietary dataset show that our algorithm can adaptively segment medical images with faster convergence and better robustness.
机译:本文提出了一种新的医学图像分割算法,该算法将密度峰聚类(DPC)与果蝇优化算法结合在一起,具有以下优点。首先,它避免了DPC的问题,该问题需要在决策图中人为选择参数(例如簇数),从而可以自动确定其值。其次,我们的算法使用随机步长,而不是果蝇优化算法中的固定步长,这有助于避免陷入局部最优。第三,我们的算法使用图像熵值选择截止距离和聚类中心,可以更好地捕获图像的结构。在基准数据集和专有数据集上进行的实验表明,我们的算法可以自适应地分割医学图像,具有更快的收敛性和更好的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号