首页> 美国卫生研究院文献>Computational and Mathematical Methods in Medicine >Dimensionality Reduction by Supervised Neighbor Embedding Using Laplacian Search
【2h】

Dimensionality Reduction by Supervised Neighbor Embedding Using Laplacian Search

机译:通过使用拉普拉斯算子的有监督邻居嵌入来降维

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Dimensionality reduction is an important issue for numerous applications including biomedical images analysis and living system analysis. Neighbor embedding, those representing the global and local structure as well as dealing with multiple manifolds, such as the elastic embedding techniques, can go beyond traditional dimensionality reduction methods and find better optima. Nevertheless, existing neighbor embedding algorithms can not be directly applied in classification as suffering from several problems: (1) high computational complexity, (2) nonparametric mappings, and (3) lack of class labels information. We propose a supervised neighbor embedding called discriminative elastic embedding (DEE) which integrates linear projection matrix and class labels into the final objective function. In addition, we present the Laplacian search direction for fast convergence. DEE is evaluated in three aspects: embedding visualization, training efficiency, and classification performance. Experimental results on several benchmark databases present that the proposed DEE exhibits a supervised dimensionality reduction approach which not only has strong pattern revealing capability, but also brings computational advantages over standard gradient based methods.
机译:降维是许多应用程序中的重要问题,包括生物医学图像分析和生命系统分析。邻居嵌入(代表全局和局部结构以及处理多个流形),例如弹性嵌入技术,可以超越传统的降维方法,并找到更好的优化方法。但是,现有的邻居嵌入算法由于存在以下几个问题而无法直接应用于分类:(1)计算复杂度高;(2)非参数映射;(3)缺少类标签信息。我们提出了一种称为区分弹性嵌入(DEE)的监督邻居嵌入,它将线性投影矩阵和类标签集成到最终目标函数中。此外,我们提出了拉普拉斯搜索方向以实现快速收敛。 DEE从三个方面进行评估:嵌入可视化,培训效率和分类性能。在几个基准数据库上的实验结果表明,提出的DEE展示了一种监督的降维方法,该方法不仅具有强大的模式显示能力,而且比基于标准梯度的方法具有计算优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号