首页> 美国卫生研究院文献>Computational and Mathematical Methods in Medicine >Automatic Lung Tumor Segmentation on PET/CT Images Using Fuzzy Markov Random Field Model
【2h】

Automatic Lung Tumor Segmentation on PET/CT Images Using Fuzzy Markov Random Field Model

机译:使用模糊马尔可夫随机场模型对PET / CT图像进行肺肿瘤自动分割

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The combination of positron emission tomography (PET) and CT images provides complementary functional and anatomical information of human tissues and it has been used for better tumor volume definition of lung cancer. This paper proposed a robust method for automatic lung tumor segmentation on PET/CT images. The new method is based on fuzzy Markov random field (MRF) model. The combination of PET and CT image information is achieved by using a proper joint posterior probability distribution of observed features in the fuzzy MRF model which performs better than the commonly used Gaussian joint distribution. In this study, the PET and CT simulation images of 7 non-small cell lung cancer (NSCLC) patients were used to evaluate the proposed method. Tumor segmentations with the proposed method and manual method by an experienced radiation oncologist on the fused images were performed, respectively. Segmentation results obtained with the two methods were similar and Dice's similarity coefficient (DSC) was 0.85 ± 0.013. It has been shown that effective and automatic segmentations can be achieved with this method for lung tumors which locate near other organs with similar intensities in PET and CT images, such as when the tumors extend into chest wall or mediastinum.
机译:正电子发射断层扫描(PET)和CT图像的组合提供了人体组织的互补功能和解剖学信息,并且已被用于更好地定义肺癌的肿瘤体积。本文提出了一种在PET / CT图像上自动进行肺肿瘤分割的可靠方法。该新方法基于模糊马尔可夫随机场(MRF)模型。 PET和CT图像信息的组合是通过使用模糊MRF模型中观察特征的适当联合后验概率分布来实现的,该概率分布比通常使用的高斯联合分布要好。在这项研究中,使用PET和CT模拟图像对7例非小细胞肺癌(NSCLC)患者进行了评估。由经验丰富的放射肿瘤学家分别用所提出的方法和手动方法对融合图像进行肿瘤分割。两种方法获得的分割结果相似,Dice的相似系数(DSC)为0.85±0.013。已经显示,对于在PET和CT图像中具有相似强度的其他器官附近定位的肺部肿瘤,例如当肿瘤延伸到胸壁或纵隔时,使用这种方法可以实现有效和自动的分割。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号