首页> 美国卫生研究院文献>PeerJ Computer Science >An intelligent diabetes classification and perception framework based on ensemble and deep learning method
【2h】

An intelligent diabetes classification and perception framework based on ensemble and deep learning method

机译:一种基于集成和深度学习方法的智能糖尿病分类与感知框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sugar in the blood can harm individuals and their vital organs, potentially leading to blindness, renal illness, as well as kidney and heart diseases. Globally, diabetic patients face an average annual mortality rate of 38%. This study employs Chi-square, mutual information, and sequential feature selection (SFS) to choose features for training multiple classifiers. These classifiers include an artificial neural network (ANN), a random forest (RF), a gradient boosting (GB) algorithm, Tab-Net, and a support vector machine (SVM). The goal is to predict the onset of diabetes at an earlier age. The classifier, developed based on the selected features, aims to enable early diagnosis of diabetes. The PIMA and early-risk diabetes datasets serve as test subjects for the developed system. The feature selection technique is then applied to focus on the most important and relevant features for model training. The experiment findings conclude that the ANN exhibited a spectacular performance in terms of accuracy on the PIMA dataset, achieving a remarkable accuracy rate of 99.35%. The second experiment, conducted on the early diabetes risk dataset using selected features, revealed that RF achieved an accuracy of 99.36%. Based on our experimental results, it can be concluded that our suggested method significantly outperformed baseline machine learning algorithms already employed for diabetes prediction on both datasets.
机译:血液中的糖分会伤害个人及其重要器官,可能导致失明、肾脏疾病以及肾脏和心脏病。在全球范围内,糖尿病患者的年平均死亡率为 38%。本研究采用卡方、互信息和顺序特征选择 (SFS) 来选择用于训练多个分类器的特征。这些分类器包括人工神经网络 (ANN)、随机森林 (RF)、梯度提升 (GB) 算法、Tab-Net 和支持向量机 (SVM)。目标是预测糖尿病的发病年龄较早。该分类器是根据所选特征开发的,旨在实现糖尿病的早期诊断。PIMA 和早期风险糖尿病数据集作为开发系统的测试对象。然后应用特征选择技术来关注模型训练中最重要和最相关的特征。实验结果得出结论,ANN 在 PIMA 数据集上的准确率方面表现出惊人的性能,达到了 99.35% 的显着准确率。第二个实验是使用选定的特征在早期糖尿病风险数据集上进行的,结果显示 RF 达到了 99.36% 的准确率。根据我们的实验结果,可以得出结论,我们建议的方法在两个数据集上都明显优于已经用于糖尿病预测的基线机器学习算法。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号