首页> 美国卫生研究院文献>PeerJ Computer Science >Transfer learning based approach for lung and colon cancer detection using local binary pattern features and explainable artificial intelligence (AI) techniques
【2h】

Transfer learning based approach for lung and colon cancer detection using local binary pattern features and explainable artificial intelligence (AI) techniques

机译:使用局部二进制模式特征和可解释的人工智能 (AI) 技术进行肺癌和结肠癌检测的基于迁移学习的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cancer, a life-threatening disorder caused by genetic abnormalities and metabolic irregularities, is a substantial health danger, with lung and colon cancer being major contributors to death. Histopathological identification is critical in directing effective treatment regimens for these cancers. The earlier these disorders are identified, the lesser the risk of death. The use of machine learning and deep learning approaches has the potential to speed up cancer diagnosis processes by allowing researchers to analyse large patient databases quickly and affordably. This study introduces the Inception-ResNetV2 model with strategically incorporated local binary patterns (LBP) features to improve diagnostic accuracy for lung and colon cancer identification. The model is trained on histopathological images, and the integration of deep learning and texture-based features has demonstrated its exceptional performance with 99.98% accuracy. Importantly, the study employs explainable artificial intelligence (AI) through SHapley Additive exPlanations (SHAP) to unravel the complex inner workings of deep learning models, providing transparency in decision-making processes. This study highlights the potential to revolutionize cancer diagnosis in an era of more accurate and reliable medical assessments.
机译:癌症是一种由遗传异常和代谢异常引起的危及生命的疾病,是一种重大的健康危害,肺癌和结肠癌是导致死亡的主要原因。组织病理学鉴定对于指导这些癌症的有效治疗方案至关重要。越早发现这些疾病,死亡风险就越低。使用机器学习和深度学习方法有可能使研究人员能够快速且经济地分析大型患者数据库,从而加快癌症诊断过程。本研究引入了 Inception-ResNetV2 模型,该模型战略性地结合了局部二元模式 (LBP) 功能,以提高肺癌和结肠癌识别的诊断准确性。该模型在组织病理学图像上进行训练,深度学习和基于纹理的特征的集成证明了其卓越的性能,准确率高达 99.98%。重要的是,该研究通过 SHapley 加法解释 (SHAP) 采用可解释的人工智能 (AI) 来揭示深度学习模型的复杂内部工作原理,从而为决策过程提供透明度。这项研究强调了在医学评估更加准确和可靠的时代彻底改变癌症诊断的潜力。

著录项

  • 期刊名称 PeerJ Computer Science
  • 作者

    Shtwai Alsubai;

  • 作者单位
  • 年(卷),期 2024(10),10
  • 年度 2024
  • 页码 e1996
  • 总页数 21
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

    机译:肺癌;结肠癌;迁移学习;局部二进制模式特征;XAI;
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号