首页> 美国卫生研究院文献>PeerJ Computer Science >A proposed reconstruction method of a 3D animation scene based on a fuzzy long and short-term memory algorithm
【2h】

A proposed reconstruction method of a 3D animation scene based on a fuzzy long and short-term memory algorithm

机译:一种基于模糊长短期记忆算法的三维动画场景重建方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the development of computer technology leading to a broad range of virtual technology implementations, the construction of virtual tasks has become highly demanded and has increased rapidly, especially in animation scenes. Constructing three-dimensional (3D) animation characters utilizing properties of actual characters could provide users with immersive experiences. However, a 3D face reconstruction (3DFR) utilizing a single image is a very demanding operation in computer graphics and vision. In addition, limited 3D face data sets reduce the performance improvement of the proposed approaches, causing a lack of robustness. When datasets are large, face recognition, transformation, and animation implementations are relatively practical. However, some reconstruction methods only consider the one-to-one processes without considering the correlations or differences in the input images, resulting in models lacking information related to face identity or being overly sensitive to face pose. A face model composed of a convolutional neural network (CNN) regresses 3D deformable model coefficients for 3DFR and alignment tasks. The manuscript proposes a reconstruction method for 3D animation scenes employing fuzzy LSMT-CNN (FLSMT-CNN). Multiple collected images are employed to reconstruct 3D animation characters. First, the serialized images are processed by the proposed method to extract the features of face parameters and then improve the conventional deformable face modeling (3DFDM). Afterward, the 3DFDM is utilized to reconstruct animation characters, and finally, high-precision reconstructions of 3D faces are achieved. The FLSMT-CNN has enhanced both the precision and strength of the reconstructed 3D animation characters, which provides more opportunities to be applied to other animation scenes.
机译:随着计算机技术的发展导致了广泛的虚拟技术实现,虚拟任务的构建变得非常高,并且迅速增加,尤其是在动画场景中。利用实际角色的属性构建 3D (3D) 动画角色可以为用户提供身临其境的体验。然而,使用单个图像的 3D 人脸重建 (3DFR) 在计算机图形学和视觉中是一项非常苛刻的操作。此外,有限的 3D 人脸数据集降低了所提出方法的性能改进,导致缺乏稳健性。当数据集较大时,人脸识别、转换和动画实现相对实用。然而,一些重建方法只考虑了一对一的过程,而没有考虑输入图像的相关性或差异性,导致模型缺乏与人脸身份相关的信息或对人脸姿势过于敏感。由卷积神经网络 (CNN) 组成的人脸模型对 3DFR 和对齐任务的 3D 可变形模型系数进行回归。该手稿提出了一种采用模糊 LSMT-CNN (FLSMT-CNN) 的 3D 动画场景重建方法。采用多个收集的图像来重建 3D 动画角色。首先,通过所提出的方法对序列化图像进行处理,以提取人脸参数的特征,然后改进传统的可变形人脸建模 (3DFDM)。然后,利用 3DFDM 重建动画角色,最后实现 3D 人脸的高精度重建。FLSMT-CNN 增强了重建的 3D 动画角色的精度和强度,这为应用于其他动画场景提供了更多机会。

著录项

  • 期刊名称 PeerJ Computer Science
  • 作者

    Ming Zhou;

  • 作者单位
  • 年(卷),期 2024(10),10
  • 年度 2024
  • 页码 e1864
  • 总页数 18
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

    机译:时间神经网络 / 3D 动画 / 场景重建 / 深度学习;
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号