首页> 美国卫生研究院文献>Journal of Radiation Research >Prediction of target position from multiple fiducial markers by partial least squares regression in real-time tumor-tracking radiation therapy
【2h】

Prediction of target position from multiple fiducial markers by partial least squares regression in real-time tumor-tracking radiation therapy

机译:在实时肿瘤追踪放射治疗中通过偏最小二乘回归从多个基准标志物预测目标位置

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The purpose of this work is to show the usefulness of a prediction method of tumor location based on partial least squares regression (PLSR) using multiple fiducial markers. The trajectory data of respiratory motion of four internal fiducial markers inserted in lungs were used for the analysis. The position of one of the four markers was assumed to be the tumor position and was predicted by other three fiducial markers. Regression coefficients for prediction of the position of the tumor-assumed marker from the fiducial markers’ positions is derived by PLSR. The tracking error and the gating error were evaluated assuming two possible variations. First, the variation of the position definition of the tumor and the markers on treatment planning computed tomograhy (CT) images. Second, the intra-fractional anatomical variation which leads the distance change between the tumor and markers during the course of treatment. For comparison, rigid predictions and ordinally multiple linear regression (MLR) predictions were also evaluated. The tracking and gating errors of PLSR prediction were smaller than those of other prediction methods. Ninety-fifth percentile of tracking/gating error in all trials were 3.7/4.1 mm, respectively in PLSR prediction for superior–inferior direction. The results suggested that PLSR prediction was robust to variations, and clinically applicable accuracy could be achievable for targeting tumors.
机译:这项工作的目的是展示基于偏最小二乘回归 (PLSR) 的肿瘤位置预测方法的有用性,该方法使用多个基准标记。采用插入肺部的 4 个内部基准标志物的呼吸运动轨迹数据进行分析。假设 4 个标志物之一的位置是肿瘤位置,并由其他 3 个基准标志物预测。用于从基准标记的位置预测肿瘤假设标记位置的回归系数由 PLSR 得出。跟踪误差和门控误差在假设两种可能的变化下进行评估。首先,肿瘤的位置定义和治疗计划计算机断层扫描 (CT) 图像上的标志物的变化。其次,分次内解剖变异导致治疗过程中肿瘤和标志物之间的距离变化。为了进行比较,还评估了刚性预测和顺序多元线性回归 (MLR) 预测。PLSR 预测的跟踪和设门误差小于其他预测方法。在所有试验中,跟踪/门控误差的第 95 个百分位数分别为 3.7/4.1 mm,用于上下方向的 PLSR 预测。结果表明,PLSR 预测对变化具有鲁棒性,并且可以实现临床适用的准确性来靶向肿瘤。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号