首页>
美国卫生研究院文献>Vision
>Evaluation of Several Computer Vision Feature Detectors/Extractors on Ahuna Mons Region in Ceres and Its Implications for Technosignatures Search
【2h】
Evaluation of Several Computer Vision Feature Detectors/Extractors on Ahuna Mons Region in Ceres and Its Implications for Technosignatures Search
展开▼
机译:谷神星 Ahuna Mons 地区几种计算机视觉特征检测器/提取器的评估及其对技术特征搜索的影响
Ahuna Mons is a 4 km particular geologic feature on the surface of Ceres, of possibly cryovolcanic origin. The special characteristics of Ahuna Mons are also interesting in regard of its surrounding area, especially for the big crater beside it. This crater possesses similarities with Ahuna Mons including diameter, age, morphology, etc. Under the cognitive psychology perspective and using current computer vision models, we analyzed these two features on Ceres for comparison and pattern-recognition similarities. Speeded up robust features (SURF), oriented features from accelerated segment test (FAST), rotated binary robust independent elementary features (BRIEF), Canny edge detector, and scale invariant feature transform (SIFT) algorithms were employed as feature-detection algorithms, avoiding human cognitive bias. The 3D analysis of images of both features’ (Ahuna Mons and Crater B) characteristics is discussed. Results showed positive results for these algorithms about the similarities of both features. Canny edge resulted as the most efficient algorithm. The 3D objects of Ahuna Mons and Crater B showed good-fitting results. Discussion is provided about the results of this computer-vision-techniques experiment for Ahuna Mons. Results showed the potential for the computer vision models in combination with 3D imaging to be free of bias and to detect potential geoengineered formations in the future. This study also brings forward the potential problem of both human and cognitive bias in artificial-intelligence-based models and the risks for the task of searching for technosignatures.
展开▼
机译:Ahuna Mons 是谷神星表面一个 4 公里长的特殊地质特征,可能是冰火山起源。Ahuna Mons 的特殊性在其周边地区也很有趣,尤其是它旁边的大火山口。这个陨石坑与 Ahuna Mons 有相似之处,包括直径、年龄、形态等。在认知心理学的角度下,使用当前的计算机视觉模型,我们分析了 Ceres 上的这两个特征,以进行比较和模式识别的相似性。加速鲁棒特征 (SURF)、加速分段测试的定向特征 (FAST) 、旋转二进制鲁棒独立初等特征 (BRIEF) 、Canny 边缘检测器和尺度不变特征变换 (SIFT) 算法被用作特征检测算法,避免了人类认知偏差。讨论了两种特征(Ahuna Mons 和 Crater B)特征的图像的 3D 分析。结果显示,这些算法在两个特征的相似性方面取得了积极的结果。Canny edge 是最有效的算法。Ahuna Mons 和 Crater B 的 3D 对象显示出良好的拟合结果。讨论了 Ahuna Mons 的计算机视觉技术实验的结果。结果表明,计算机视觉模型与 3D 成像相结合的潜力是无偏差的,并在未来检测潜在的地球工程地层。这项研究还提出了基于人工智能的模型中人类和认知偏见的潜在问题,以及搜索技术特征任务的风险。
展开▼