首页> 美国卫生研究院文献>Plants >Can Artificial Intelligence Help in the Study of Vegetative Growth Patterns from Herbarium Collections? An Evaluation of the Tropical Flora of the French Guiana Forest
【2h】

Can Artificial Intelligence Help in the Study of Vegetative Growth Patterns from Herbarium Collections? An Evaluation of the Tropical Flora of the French Guiana Forest

机译:人工智能可以帮助研究植物标本馆藏品中的营养生长模式吗?法属圭亚那森林热带植物群评价

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A better knowledge of tree vegetative growth phenology and its relationship to environmental variables is crucial to understanding forest growth dynamics and how climate change may affect it. Less studied than reproductive structures, vegetative growth phenology focuses primarily on the analysis of growing shoots, from buds to leaf fall. In temperate regions, low winter temperatures impose a cessation of vegetative growth shoots and lead to a well-known annual growth cycle pattern for most species. The humid tropics, on the other hand, have less seasonality and contain many more tree species, leading to a diversity of patterns that is still poorly known and understood. The work in this study aims to advance knowledge in this area, focusing specifically on herbarium scans, as herbariums offer the promise of tracking phenology over long periods of time. However, such a study requires a large number of shoots to be able to draw statistically relevant conclusions. We propose to investigate the extent to which the use of deep learning can help detect and type-classify these relatively rare vegetative structures in herbarium collections. Our results demonstrate the relevance of using herbarium data in vegetative phenology research as well as the potential of deep learning approaches for growing shoot detection.
机译:更好地了解树木营养生长物候学及其与环境变量的关系对于了解森林生长动态以及气候变化如何影响森林生长至关重要。与生殖结构相比,营养生长物候学的研究较少,主要侧重于分析从芽到落叶的生长芽。在温带地区,冬季低温导致营养生长芽停止,并导致大多数物种出现众所周知的年度生长周期模式。另一方面,潮湿的热带地区季节性较低,包含更多的树种,导致模式的多样性仍然知之甚少。本研究的工作旨在推进该领域的知识,特别关注植物标本馆扫描,因为植物标本馆提供了长期跟踪物候学的希望。然而,这样的研究需要大量的拍摄才能得出具有统计意义的结论。我们建议研究深度学习的使用在多大程度上可以帮助检测和类型分类植物标本馆藏品中这些相对罕见的植被结构。我们的结果表明,在植物物候学研究中使用植物标本数据的重要性,以及深度学习方法在生长芽检测方面的潜力。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号