首页> 美国卫生研究院文献>Biomolecules >A Survey on Computational Methods in Drug Discovery for Neurodegenerative Diseases
【2h】

A Survey on Computational Methods in Drug Discovery for Neurodegenerative Diseases

机译:神经退行性疾病药物发现中的计算方法调查

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Currently, the age structure of the world population is changing due to declining birth rates and increasing life expectancy. As a result, physicians worldwide have to treat an increasing number of age-related diseases, of which neurological disorders represent a significant part. In this context, there is an urgent need to discover new therapeutic approaches to counteract the effects of neurodegeneration on human health, and computational science can be of pivotal importance for more effective neurodrug discovery. The knowledge of the molecular structure of the receptors and other biomolecules involved in neurological pathogenesis facilitates the design of new molecules as potential drugs to be used in the fight against diseases of high social relevance such as dementia, Alzheimer’s disease (AD) and Parkinson’s disease (PD), to cite only a few. However, the absence of comprehensive guidelines regarding the strengths and weaknesses of alternative approaches creates a fragmented and disconnected field, resulting in missed opportunities to enhance performance and achieve successful applications. This review aims to summarize some of the most innovative strategies based on computational methods used for neurodrug development. In particular, recent applications and the state-of-the-art of molecular docking and artificial intelligence for ligand- and target-based approaches in novel drug design were reviewed, highlighting the crucial role of in silico methods in the context of neurodrug discovery for neurodegenerative diseases.
机译:目前,由于出生率下降和预期寿命延长,世界人口的年龄结构正在发生变化。因此,世界各地的医生必须治疗越来越多的与年龄相关的疾病,其中神经系统疾病占很大一部分。在这种情况下,迫切需要发现新的治疗方法来抵消神经退行性变对人类健康的影响,而计算科学对于更有效的神经药物发现至关重要。对参与神经发病机制的受体和其他生物分子的分子结构的了解有助于设计新分子作为潜在药物,用于对抗具有高度社会相关性的疾病,如痴呆、阿尔茨海默病 (AD) 和帕金森病 (PD),仅举几例。然而,缺乏关于替代方法优缺点的全面指南,造成了一个分散且脱节的领域,导致错过了提高性能和实现成功应用的机会。本文旨在总结一些基于神经药物开发计算方法的最具创新性的策略。特别是,回顾了分子对接和人工智能在新药设计中基于配体和靶点的方法的最新应用和最新进展,强调了计算机模拟方法在神经退行性疾病神经药物发现中的关键作用。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号