首页> 美国卫生研究院文献>European Journal of Psychotraumatology >Latent trajectory studies: the basics how to interpret the results and what to report
【2h】

Latent trajectory studies: the basics how to interpret the results and what to report

机译:潜在轨迹研究:基础知识如何解释结果以及报告内容

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

BackgroundIn statistics, tools have been developed to estimate individual change over time. Also, the existence of latent trajectories, where individuals are captured by trajectories that are unobserved (latent), can be evaluated (Muthén & Muthén, ). The method used to evaluate such trajectories is called Latent Growth Mixture Modeling (LGMM) or Latent Class Growth Modeling (LCGA). The difference between the two models is whether variance within latent classes is allowed for (Jung & Wickrama, ). The default approach most often used when estimating such models begins with estimating a single cluster model, where only a single underlying group is presumed. Next, several additional models are estimated with an increasing number of clusters (latent groups or classes). For each of these models, the software is allowed to estimate all parameters without any restrictions. A final model is chosen based on model comparison tools, for example, using the BIC, the bootstrapped chi-square test, or the Lo-Mendell-Rubin test.
机译:背景技术在统计数据中,已经开发了用于估计随时间变化的工具。同样,可以评估潜在轨迹的存在,在这些潜在轨迹中,个体被未被观察到的(潜在)轨迹捕获(Muthén和Muthén,)。用于评估此类轨迹的方法称为潜在增长混合模型(LGMM)或潜在类别增长模型(LCGA)。两种模型之间的差异在于是否允许在潜在类别内进行方差分析(Jung&Wickrama,)。估算此类模型时最常使用的默认方法始于估算单个群集模型,在该模型中仅假定一个基础组。接下来,估计了几个其他模型,其中包含越来越多的聚类(潜在组或类)。对于这些模型中的每一个,都允许该软件无限制地估计所有参数。基于模型比较工具选择最终模型,例如,使用BIC,自举卡方检验或Lo-Mendell-Rubin检验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号