首页> 美国卫生研究院文献>CPT: Pharmacometrics Systems Pharmacology >Growth‐rate model predicts in vivo tumor response from in vitro data
【2h】

Growth‐rate model predicts in vivo tumor response from in vitro data

机译:生长速率模型根据体外数据预测体内肿瘤反应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A major challenge in oncology drug development is to elucidate why drugs that show promising results in cancer cell lines in vitro fail in mouse studies or human trials. One of the fundamental steps toward solving this problem is to better predict how in vitro potency translates into in vivo efficacy. A common approach to infer whether a model will respond in vivo is based on in vitro half‐maximal inhibitory concentration values (IC 50 ), but yields limited quantitative comparison between cell lines and drugs, potentially because cell division and death rates differ between cell lines and in vivo models. Other methods based either on mechanistic modeling or machine learning require molecular insights or extensive training data, limiting their use for early drug development. To address these challenges, we propose a mathematical model integrating in vitro growth rate inhibition values with pharmacokinetic parameters to estimate in vivo drug response. Upon calibration with a drug‐specific factor, our model yields precise estimates of tumor growth rate inhibition for in vivo studies based on in vitro data. We then demonstrate how our model can be used to study dosing schedules and perform sensitivity analyses. In addition, it provides meaningful metrics to assess association with genotypes and guide clinical trial design. By relying on commonly collected data, our approach shows great promise for optimizing drug development, better characterizing the efficacy of novel molecules targeting proliferation, and identifying more robust biomarkers of sensitivity while limiting the number of in vivo experiments.
机译:肿瘤药物开发的一个主要挑战是阐明为什么在体外癌细胞系中显示出有希望的结果的药物在小鼠研究或人体试验中失败。解决这个问题的基本步骤之一是更好地预测体外效力如何转化为体内功效。推断模型是否会在体内产生反应的常用方法是基于体外半数最大抑制浓度值 (IC 50),但细胞系和药物之间的定量比较有限,这可能是因为细胞系和体内模型之间的细胞分裂和死亡率不同。其他基于机理建模或机器学习的方法需要分子洞察力或广泛的训练数据,这限制了它们在早期药物开发中的使用。为了应对这些挑战,我们提出了一个数学模型,将体外生长速率抑制值与药代动力学参数相结合,以估计体内药物反应。在用药物特异性因子校准后,我们的模型根据体外数据为体内研究生成了肿瘤生长速率抑制的精确估计值。然后,我们演示了如何使用我们的模型来研究给药方案和进行敏感性分析。此外,它还提供了有意义的指标来评估与基因型的关联并指导临床试验设计。通过依赖通常收集的数据,我们的方法在优化药物开发、更好地表征靶向增殖的新分子的功效以及识别更强大的敏感性生物标志物的同时限制体内实验的数量方面显示出巨大的前景。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号