首页> 美国卫生研究院文献>Frontiers in Behavioral Neuroscience >Roles for Multifunctional and Specialized Spinal Interneurons During Motor Pattern Generation in Tadpoles Zebrafish Larvae and Turtles
【2h】

Roles for Multifunctional and Specialized Spinal Interneurons During Motor Pattern Generation in Tadpoles Zebrafish Larvae and Turtles

机译:在Ta斑马鱼幼虫和乌龟的运动模式生成过程中的多功能和专门的脊髓interneurons的作用。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The hindbrain and spinal cord can produce multiple forms of locomotion, escape, and withdrawal behaviors and (in limbed vertebrates) site-specific scratching. Until recently, the prevailing view was that the same classes of central nervous system neurons generate multiple kinds of movements, either through reconfiguration of a single, shared network or through an increase in the number of neurons recruited within each class. The mechanisms involved in selecting and generating different motor patterns have recently been explored in detail in some non-mammalian, vertebrate model systems. Work on the hatchling Xenopus tadpole, the larval zebrafish, and the adult turtle has now revealed that distinct kinds of motor patterns are actually selected and generated by combinations of multifunctional and specialized spinal interneurons. Multifunctional interneurons may form a core, multipurpose circuit that generates elements of coordinated motor output utilized in multiple behaviors, such as left-right alternation. But, in addition, specialized spinal interneurons including separate glutamatergic and glycinergic classes are selectively activated during specific patterns: escape-withdrawal, swimming and struggling in tadpoles and zebrafish, and limb withdrawal and scratching in turtles. These specialized neurons can contribute by changing the way central pattern generator (CPG) activity is initiated and by altering CPG composition and operation. The combined use of multifunctional and specialized neurons is now established as a principle of organization across a range of vertebrates. Future research may reveal common patterns of multifunctionality and specialization among interneurons controlling diverse movements and whether similar mechanisms exist in higher-order brain circuits that select among a wider array of complex movements.
机译:后脑和脊髓可产生多种形式的运动,逃逸和退缩行为,以及(在四肢脊椎动物中)特定部位的抓挠。直到最近,普遍的观点是,相同类别的中枢神经系统神经元通过重新配置单个共享网络或通过增加每个类别中招募的神经元数量来产生多种运动。最近在一些非哺乳动物的脊椎动物模型系统中详细探讨了选择和产生不同运动模式的机制。现在,对孵化的爪蟾,幼虫斑马鱼和成年乌龟的研究表明,实际上是通过多功能和专门的脊椎中间神经元的组合来选择和产生不同种类的运动模式。多功能中间神经元可以形成核心的多用途电路,该电路生成用于多种行为(如左右交替)的协调电动机输出的元素。但是,此外,包括特定的谷氨酸能和甘氨酸能类别在内的特殊脊神经中枢神经元在特定模式下有选择性地被激活:逃生撤离,bra和斑马鱼中的游泳和挣扎,以及龟中肢体的撤回和抓挠。这些特殊的神经元可以通过改变中央模式发生器(CPG)的启动方式以及改变CPG的组成和操作来发挥作用。现已将多功能和专门神经元的组合使用确定为横跨一系列脊椎动物的组织原则。未来的研究可能揭示控制不同运动的中间神经元之间多功能和专业化的常见模式,以及在更广泛的复杂运动中进行选择的高级大脑回路中是否存在类似的机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号