首页> 美国卫生研究院文献>Frontiers in Computational Neuroscience >Peripheral Processing Facilitates Optic Flow-Based Depth Perception
【2h】

Peripheral Processing Facilitates Optic Flow-Based Depth Perception

机译:外围处理有助于基于光学流的深度感知

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Flying insects, such as flies or bees, rely on consistent information regarding the depth structure of the environment when performing their flight maneuvers in cluttered natural environments. These behaviors include avoiding collisions, approaching targets or spatial navigation. Insects are thought to obtain depth information visually from the retinal image displacements (“optic flow”) during translational ego-motion. Optic flow in the insect visual system is processed by a mechanism that can be modeled by correlation-type elementary motion detectors (EMDs). However, it is still an open question how spatial information can be extracted reliably from the responses of the highly contrast- and pattern-dependent EMD responses, especially if the vast range of light intensities encountered in natural environments is taken into account. This question will be addressed here by systematically modeling the peripheral visual system of flies, including various adaptive mechanisms. Different model variants of the peripheral visual system were stimulated with image sequences that mimic the panoramic visual input during translational ego-motion in various natural environments, and the resulting peripheral signals were fed into an array of EMDs. We characterized the influence of each peripheral computational unit on the representation of spatial information in the EMD responses. Our model simulations reveal that information about the overall light level needs to be eliminated from the EMD input as is accomplished under light-adapted conditions in the insect peripheral visual system. The response characteristics of large monopolar cells (LMCs) resemble that of a band-pass filter, which reduces the contrast dependency of EMDs strongly, effectively enhancing the representation of the nearness of objects and, especially, of their contours. We furthermore show that local brightness adaptation of photoreceptors allows for spatial vision under a wide range of dynamic light conditions.
机译:在混乱的自然环境中执行飞行操作时,飞行昆虫(例如苍蝇或蜜蜂)依赖于有关环境深度结构的一致信息。这些行为包括避免碰撞,接近目标或空间导航。人们认为昆虫在平移自我运动过程中可以从视网膜图像位移(“光流”)中获得视觉上的深度信息。昆虫视觉系统中的光学流由一种机制处理,该机制可以通过相关类型的基本运动检测器(EMD)进行建模。但是,如何从高度依赖于对比度和模式的EMD响应中可靠地提取空间信息仍然是一个悬而未决的问题,特别是如果考虑到自然环境中遇到的大范围的光强度的话。通过系统建模果蝇的外围视觉系统(包括各种自适应机制),可以解决此问题。图像序列刺激了周边视觉系统的不同模型变体,这些图像序列模拟了在各种自然环境中平移自我运动过程中的全景视觉输入,并将产生的周边信号输入到EMD阵列中。我们表征了每个外围计算单元对EMD响应中空间信息表示的影响。我们的模型仿真表明,需要从EMD输入中消除有关总光照水平的信息,这是在昆虫外围视觉系统中在光照条件下完成的。大型单极细胞(LMC)的响应特性类似于带通滤波器,这极大地降低了EMD的对比度依赖性,有效地增强了对象(尤其是其轮廓)的接近度表示。我们进一步表明,感光体的局部亮度适应性允许在宽范围的动态光照条件下实现空间视觉。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号