首页> 美国卫生研究院文献>Frontiers in Computational Neuroscience >Signal enhancement in the output stage of the basal ganglia by synaptic short-term plasticity in the direct indirect and hyperdirect pathways
【2h】

Signal enhancement in the output stage of the basal ganglia by synaptic short-term plasticity in the direct indirect and hyperdirect pathways

机译:通过直接间接和超直接途径的突触短期可塑性增强基底神经节输出阶段的信号

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many of the synapses in the basal ganglia display short-term plasticity. Still, computational models have not yet been used to investigate how this affects signaling. Here we use a model of the basal ganglia network, constrained by available data, to quantitatively investigate how synaptic short-term plasticity affects the substantia nigra reticulata (SNr), the basal ganglia output nucleus. We find that SNr becomes particularly responsive to the characteristic burst-like activity seen in both direct and indirect pathway striatal medium spiny neurons (MSN). As expected by the standard model, direct pathway MSNs are responsible for decreasing the activity in SNr. In particular, our simulations indicate that bursting in only a few percent of the direct pathway MSNs is sufficient for completely inhibiting SNr neuron activity. The standard model also suggests that SNr activity in the indirect pathway is controlled by MSNs disinhibiting the subthalamic nucleus (STN) via the globus pallidus externa (GPe). Our model rather indicates that SNr activity is controlled by the direct GPe-SNr projections. This is partly because GPe strongly inhibits SNr but also due to depressing STN-SNr synapses. Furthermore, depressing GPe-SNr synapses allow the system to become sensitive to irregularly firing GPe subpopulations, as seen in dopamine depleted conditions, even when the GPe mean firing rate does not change. Similar to the direct pathway, simulations indicate that only a few percent of bursting indirect pathway MSNs can significantly increase the activity in SNr. Finally, the model predicts depressing STN-SNr synapses, since such an assumption explains experiments showing that a brief transient activation of the hyperdirect pathway generates a tri-phasic response in SNr, while a sustained STN activation has minor effects. This can be explained if STN-SNr synapses are depressing such that their effects are counteracted by the (known) depressing GPe-SNr inputs.
机译:基底神经节中的许多突触显示出短期可塑性。尽管如此,尚未使用计算模型来研究这如何影响信令。在这里,我们使用基底神经节网络模型,在可用数据的约束下,定量研究突触短期可塑性如何影响基底神经节输出核黑质(SNr)。我们发现,SNr变得对直接和间接途径的纹状体中棘神经元(MSN)中所见的特征性爆发样活动特别敏感。如标准模型所预期的那样,直接途径MSN负责降低SNr中的活性。特别地,我们的模拟表明,仅百分之几的直接途径MSN爆发就足以完全抑制SNr神经元活性。该标准模型还表明,间接途径中的SNr活性受MSN通过苍白球外部(GPe)抑制丘脑下核(STN)的控制。我们的模型反而表明SNr的活动受直接GPe-SNr预测控制。部分原因是因为GPe强烈抑制SNr,但同时也由于抑制了STN-SNr突触。此外,降低GPe-SNr突触可使系统变得对不规则放电的GPe亚群敏感(如在多巴胺耗尽的情况下所见),即使GPe的平均发射率没有变化也是如此。与直接途径相似,模拟表明,爆发的间接途径MSN中只有百分之几可以显着增加SNr的活性。最后,该模型预测了STN-SNr突触的抑制,因为这种假设解释了实验,表明短暂的超直接途径瞬时激活会在SNr中产生三相反应,而持续的STN激活则影响较小。如果STN-SNr突触被抑制,从而使(已知的)抑制GPe-SNr输入抵消其作用,则可以对此进行解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号