首页> 美国卫生研究院文献>Frontiers in Genetics >Jointly Modelling Single Nucleotide Polymorphisms With Longitudinal and Time-to-Event Trait: An Application to Type 2 Diabetes and Fasting Plasma Glucose
【2h】

Jointly Modelling Single Nucleotide Polymorphisms With Longitudinal and Time-to-Event Trait: An Application to Type 2 Diabetes and Fasting Plasma Glucose

机译:纵向和时间事件特征联合建模单核苷酸多态性:在2型糖尿病和空腹血浆葡萄糖中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In observational cohorts, longitudinal data are collected with repeated measurements at predetermined time points for many biomarkers, along with other variables measured at baseline. In these cohorts, time until a certain event of interest occurs is reported and very often, a relationship will be observed between some biomarker repeatedly measured over time and that event. Joint models were designed to efficiently estimate statistical parameters describing this relationship by combining a mixed model for the longitudinal biomarker trajectory and a survival model for the time until occurrence of the event, using a set of random effects to account for the relationship between the two types of data. In this paper, we discuss the implementation of joint models in genetic association studies. First, we check model consistency based on different simulation scenarios, by varying sample sizes, minor allele frequencies and number of repeated measurements. Second, using genotypes assayed with the Metabochip DNA arrays (Illumina) from about 4,500 individuals recruited in the French cohort D.E.S.I.R. (Data from an Epidemiological Study on the Insulin Resistance syndrome), we assess the feasibility of implementing the joint modelling approach in a real high-throughput genomic dataset. An alternative model approximating the joint model, called the Two-Step approach (TS), is also presented. Although the joint model shows more precise and less biased estimators than its alternative counterpart, the TS approach results in much reduced computational times, and could thus be used for testing millions of SNPs at the genome-wide scale.
机译:在观察性队列中,纵向数据是在许多生物标志物的预定时间点通过重复测量以及其他在基线测量的变量收集的。在这些队列中,报告了直到发生某个特定事件为止的时间,并且经常会观察到随着时间重复测量的某些生物标志物与该事件之间的关系。设计联合模型以通过组合纵向生物标志物轨迹的混合模型和事件发生之前的时间的生存模型来有效地估计描述这种关系的统计参数,并使用一组随机效应来解释这两种类型之间的关系数据的。在本文中,我们讨论了遗传关联研究中联合模型的实现。首先,我们通过改变样本大小,次要等位基因频率和重复测量次数,根据不同的模拟场景检查模型的一致性。其次,使用通过Metabochip DNA阵列(Illumina)分析的基因型,该基因型来自法国队列D.E.S.I.R. (来自胰岛素抵抗综合征流行病学研究的数据),我们评估了在实际的高通量基因组数据集中实施联合建模方法的可行性。还提出了一种近似联合模型的替代模型,称为两步法(TS)。尽管联合模型显示出比其替代模型更为精确且估计量较少的估计,但TS方法可大大减少计算时间,因此可用于在全基因组范围内测试数百万个SNP。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号