首页> 美国卫生研究院文献>Frontiers in Neuroinformatics >Algorithms of causal inference for the analysis of effective connectivity among brain regions
【2h】

Algorithms of causal inference for the analysis of effective connectivity among brain regions

机译:因果推理算法用于分析大脑区域之间的有效连通性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years, powerful general algorithms of causal inference have been developed. In particular, in the framework of Pearl’s causality, algorithms of inductive causation (IC and IC*) provide a procedure to determine which causal connections among nodes in a network can be inferred from empirical observations even in the presence of latent variables, indicating the limits of what can be learned without active manipulation of the system. These algorithms can in principle become important complements to established techniques such as Granger causality and Dynamic Causal Modeling (DCM) to analyze causal influences (effective connectivity) among brain regions. However, their application to dynamic processes has not been yet examined. Here we study how to apply these algorithms to time-varying signals such as electrophysiological or neuroimaging signals. We propose a new algorithm which combines the basic principles of the previous algorithms with Granger causality to obtain a representation of the causal relations suited to dynamic processes. Furthermore, we use graphical criteria to predict dynamic statistical dependencies between the signals from the causal structure. We show how some problems for causal inference from neural signals (e.g., measurement noise, hemodynamic responses, and time aggregation) can be understood in a general graphical approach. Focusing on the effect of spatial aggregation, we show that when causal inference is performed at a coarser scale than the one at which the neural sources interact, results strongly depend on the degree of integration of the neural sources aggregated in the signals, and thus characterize more the intra-areal properties than the interactions among regions. We finally discuss how the explicit consideration of latent processes contributes to understand Granger causality and DCM as well as to distinguish functional and effective connectivity.
机译:近年来,已经开发了强大的因果推理通用算法。特别是,在Pearl的因果关系框架中,归纳因果算法(IC和IC * )提供了一种过程,可以确定即使存在的情况下,也可以从经验观察中推断出网络中节点之间的因果关系潜在变量的数量,指示在不主动操纵系统的情况下可以学到的知识的极限。这些算法原则上可以成为已建立技术(例如Granger因果关系和动态因果模型(DCM))的重要补充,以分析大脑区域之间的因果影响(有效连通性)。但是,尚未研究它们在动态过程中的应用。在这里,我们研究如何将这些算法应用于时变信号,例如电生理或神经影像信号。我们提出了一种新算法,该算法将先前算法的基本原理与Granger因果关系相结合,以获得适用于动态过程的因果关系表示。此外,我们使用图形标准来预测因果结构信号之间的动态统计依赖性。我们展示了如何通过一般的图形方法来理解神经信号因果推理的一些问题(例如,测量噪声,血液动力学响应和时间聚集)。着眼于空间聚集的影响,我们发现当因果推断的规模大于神经源交互作用的因果推断时,结果在很大程度上取决于聚集在信号中的神经源的整合程度,从而表征区域内属性比区域间相互作用更多。最后,我们讨论潜在过程的明确考虑如何有助于理解Granger因果关系和DCM以及区分功能和有效的连通性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号