首页> 美国卫生研究院文献>Frontiers in Neurorobotics >Muscle Co-Contraction Modulates Damping and Joint Stability in a Three-Link Biomechanical Limb
【2h】

Muscle Co-Contraction Modulates Damping and Joint Stability in a Three-Link Biomechanical Limb

机译:肌肉共收缩调节三连杆生物力学肢体的阻尼和关节稳定性。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computational models of neuromotor control require forward models of limb movement that can replicate the natural relationships between muscle activation and joint dynamics without the burdens of excessive anatomical detail. We present a model of a three-link biomechanical limb that emphasizes the dynamics of limb movement within a simplified two-dimensional framework. Muscle co-contraction effects were incorporated into the model by flanking each joint with a pair of antagonist muscles that may be activated independently. Muscle co-contraction is known to alter the damping and stiffness of limb joints without altering net joint torque. Idealized muscle actuators were implemented using the Voigt muscle model which incorporates the parallel elasticity of muscle and tendon but omits series elasticity. The natural force-length-velocity relationships of contractile muscle tissue were incorporated into the actuators using ideal mathematical forms. Numerical stability analysis confirmed that co-contraction of these simplified actuators increased damping in the biomechanical limb consistent with observations of human motor control. Dynamic changes in joint stiffness were excluded by the omission of series elasticity. The analysis also revealed the unexpected finding that distinct stable (bistable) equilibrium positions can co-exist under identical levels of muscle co-contraction. We map the conditions under which bistability arises and prove analytically that monostability (equifinality) is guaranteed when the antagonist muscles are identical. Lastly we verify these analytic findings in the full biomechanical limb model.
机译:神经运动控制的计算模型需要肢体运动的正向模型,该模型可以复制肌肉激活与关节动力学之间的自然关系,而不会造成过多解剖学细节的负担。我们提出了一种三链式生物力学肢体模型,该模型强调了简化的二维框架内肢体运动的动力学。通过在每个关节的两侧分别放置一对可以独立激活的拮抗肌,将肌肉的共收缩作用纳入模型。众所周知,肌肉收缩可以改变四肢关节的阻尼和刚度,而不会改变关节净扭矩。理想的肌肉促动器是使用Voigt肌肉模型实现的,该模型结合了肌肉和肌腱的平行弹性,但忽略了系列弹性。使用理想的数学形式将收缩性肌肉组织的自然力-长度-速度关系合并到执行器中。数值稳定性分析证实,这些简化的致动器的共同收缩增加了生物力学肢体中的阻尼,这与对人类运动控制的观察一致。省略了系列弹性,排除了关节刚度的动态变化。分析还揭示了出乎意料的发现,即在相同水平的肌肉共同收缩下,独特的稳定(双稳态)平衡位置可以共存。我们绘制了双稳态产生的条件,并分析性地证明了当拮抗肌相同时,单稳定性(相等性)得到保证。最后,我们在完整的生物力学肢体模型中验证了这些分析结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号