首页> 美国卫生研究院文献>Frontiers in Neuroscience >Simple Cortical and Thalamic Neuron Models for Digital Arithmetic Circuit Implementation
【2h】

Simple Cortical and Thalamic Neuron Models for Digital Arithmetic Circuit Implementation

机译:用于数字算术电路实现的简单皮质和丘脑神经元模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Trade-off between reproducibility of neuronal activities and computational efficiency is one of crucial subjects in computational neuroscience and neuromorphic engineering. A wide variety of neuronal models have been studied from different viewpoints. The digital spiking silicon neuron (DSSN) model is a qualitative model that focuses on efficient implementation by digital arithmetic circuits. We expanded the DSSN model and found appropriate parameter sets with which it reproduces the dynamical behaviors of the ionic-conductance models of four classes of cortical and thalamic neurons. We first developed a four-variable model by reducing the number of variables in the ionic-conductance models and elucidated its mathematical structures using bifurcation analysis. Then, expanded DSSN models were constructed that reproduce these mathematical structures and capture the characteristic behavior of each neuron class. We confirmed that statistics of the neuronal spike sequences are similar in the DSSN and the ionic-conductance models. Computational cost of the DSSN model is larger than that of the recent sophisticated Integrate-and-Fire-based models, but smaller than the ionic-conductance models. This model is intended to provide another meeting point for above trade-off that satisfies the demand for large-scale neuronal network simulation with closer-to-biology models.
机译:神经元活动的可再现性与计算效率之间的权衡是计算神经科学和神经形态工程中的关键主题之一。从不同的角度研究了各种各样的神经元模型。数字尖峰硅神经元(DSSN)模型是定性模型,致力于数字算术电路的高效实现。我们扩展了DSSN模型并找到了合适的参数集,该参数集可重现四类皮质和丘脑神经元离子电导模型的动力学行为。我们首先通过减少离子电导模型中的变量数量来开发了四变量模型,并使用分叉分析阐明了其数学结构。然后,构建扩展的DSSN模型,以重现这些数学结构并捕获每个神经元类别的特征行为。我们证实,DSSN和离子电导模型中神经元尖峰序列的统计数据相似。 DSSN模型的计算成本比最近的基于“集成并发射”技术的复杂模型要高,但比离子电导模型要小。该模型旨在为上述折衷提供另一个契合点,该点可以满足使用生物学模型进行大规模神经网络仿真的需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号