首页> 美国卫生研究院文献>Frontiers in Physiology >Analysis of Power Laws Shape Collapses and Neural Complexity: New Techniques and MATLAB Support via the NCC Toolbox
【2h】

Analysis of Power Laws Shape Collapses and Neural Complexity: New Techniques and MATLAB Support via the NCC Toolbox

机译:幂律形状崩溃和神经复杂性分析:通过NCC工具箱的新技术和MATLAB支持

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Neural systems include interactions that occur across many scales. Two divergent methods for characterizing such interactions have drawn on the physical analysis of critical phenomena and the mathematical study of information. Inferring criticality in neural systems has traditionally rested on fitting power laws to the property distributions of “neural avalanches” (contiguous bursts of activity), but the fractal nature of avalanche shapes has recently emerged as another signature of criticality. On the other hand, neural complexity, an information theoretic measure, has been used to capture the interplay between the functional localization of brain regions and their integration for higher cognitive functions. Unfortunately, treatments of all three methods—power-law fitting, avalanche shape collapse, and neural complexity—have suffered from shortcomings. Empirical data often contain biases that introduce deviations from true power law in the tail and head of the distribution, but deviations in the tail have often been unconsidered; avalanche shape collapse has required manual parameter tuning; and the estimation of neural complexity has relied on small data sets or statistical assumptions for the sake of computational efficiency. In this paper we present technical advancements in the analysis of criticality and complexity in neural systems. We use maximum-likelihood estimation to automatically fit power laws with left and right cutoffs, present the first automated shape collapse algorithm, and describe new techniques to account for large numbers of neural variables and small data sets in the calculation of neural complexity. In order to facilitate future research in criticality and complexity, we have made the software utilized in this analysis freely available online in the MATLAB NCC (Neural Complexity and Criticality) Toolbox.
机译:神经系统包括许多规模的相互作用。表征这种相互作用的两种不同方法是根据关键现象的物理分析和信息的数学研究得出的。传统上,推断神经系统中的临界度取决于将幂律拟合为“神经雪崩”(连续的活动爆发)的属性分布,但是最近,雪崩形状的分形性质成为临界度的另一个标志。另一方面,神经复杂性是一种信息理论方法,已被用来捕获大脑区域的功能性定位与其整合以实现更高的认知功能之间的相互作用。不幸的是,这三种方法(幂律拟合,雪崩形状塌陷和神经复杂性)的治疗都存在缺点。经验数据通常包含一些偏差,这些偏差会在分布的尾部和头部引入与真实幂定律的偏差,但是尾部的偏差往往未被考虑;雪崩形状塌陷需要手动参数调整;为了提高计算效率,对神经复杂性的估计依赖于较小的数据集或统计假设。在本文中,我们介绍了神经系统的关键性和复杂性分析中的技术进步。我们使用最大似然估计来自动拟合具有左右边界的幂定律,提出第一个自动形状塌陷算法,并描述在计算神经复杂性时考虑大量神经变量和少量数据集的新技术。为了促进将来对关键性和复杂性的研究,我们已在MATLAB NCC(神经复杂性和关键性)工具箱中免费在线提供了此分析中使用的软件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号