首页> 美国卫生研究院文献>Ecology and Evolution >Generation and applications of simulated datasets to integrate social network and demographic analyses
【2h】

Generation and applications of simulated datasets to integrate social network and demographic analyses

机译:生成和应用模拟数据集以整合社交网络和人口统计分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Social networks are tied to population dynamics; interactions are driven by population density and demographic structure, while social relationships can be key determinants of survival and reproductive success. However, difficulties integrating models used in demography and network analysis have limited research at this interface. We introduce the R package genNetDem for simulating integrated network–demographic datasets. It can be used to create longitudinal social network and/or capture–recapture datasets with known properties. It incorporates the ability to generate populations and their social networks, generate grouping events using these networks, simulate social network effects on individual survival, and flexibly sample these longitudinal datasets of social associations. By generating co‐capture data with known statistical relationships, it provides functionality for methodological research. We demonstrate its use with case studies testing how imputation and sampling design influence the success of adding network traits to conventional Cormack–Jolly–Seber (CJS) models. We show that incorporating social network effects into CJS models generates qualitatively accurate results, but with downward‐biased parameter estimates when network position influences survival. Biases are greater when fewer interactions are sampled or fewer individuals observed in each interaction. While our results indicate the potential of incorporating social effects within demographic models, they show that imputing missing network measures alone is insufficient to accurately estimate social effects on survival, pointing to the importance of incorporating network imputation approaches. genNetDem provides a flexible tool to aid these methodological advancements and help researchers testing other sampling considerations in social network studies.
机译:社交网络与人口动态息息相关;互动由人口密度和人口结构驱动,而社会关系可能是生存和繁殖成功的关键决定因素。然而,集成人口学和网络分析中使用的模型的困难限制了该界面的研究。我们介绍了用于模拟集成网络人口数据集的 R 包 genNetDem。它可用于创建纵向社交网络和/或捕获-重新捕获具有已知属性的数据集。它结合了生成种群及其社交网络、使用这些网络生成分组事件、模拟社交网络对个人生存的影响以及灵活地对这些社会关联的纵向数据集进行采样的能力。通过生成具有已知统计关系的共同捕获数据,它为方法研究提供了功能。我们通过案例研究来展示它的使用,这些案例研究测试了插补和抽样设计如何影响将网络特征添加到传统 Cormack-Jolly-Seber (CJS) 模型的成功。我们表明,将社交网络效应纳入 CJS 模型会产生定性准确的结果,但当网络位置影响生存时,参数估计会向下偏倚。当采样的交互较少或每次交互中观察到的个体较少时,偏差会更大。虽然我们的结果表明有可能将社会影响纳入人口统计模型,但它们表明,仅靠估算缺失的网络测量不足以准确估计社会对生存的影响,这表明了纳入网络归因方法的重要性。genNetDem 提供了一个灵活的工具来帮助这些方法学进步,并帮助研究人员测试社交网络研究中的其他抽样考虑因素。

著录项

  • 期刊名称 Ecology and Evolution
  • 作者单位
  • 年(卷),期 2023(13),5
  • 年度 2023
  • 页码 e9871
  • 总页数 16
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

    机译:共捕获数据、隐马尔可夫模型、种群动态、随机块模型、生存率;
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号